Yakov Berkovich; Zvonimir Janko: Groups of Prime Power Order. Volume 1 ( De Gruyter Expositions in Mathematics )

Publication series :De Gruyter Expositions in Mathematics

Author: Yakov Berkovich  

Publisher: De Gruyter‎

Publication year: 2008

E-ISBN: 9783110208221

P-ISBN(Paperback): 9783110204186

Subject: O152 group theory

Keyword: Group Theory Order Primes

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

This is the first of three volumes of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this monograph include: (a) counting of subgroups, with almost all main counting theorems being proved, (b) regular p-groups and regularity criteria, (c) p-groups of maximal class and their numerous characterizations, (d) characters of p-groups, (e) p-groups with large Schur multiplier and commutator subgroups, (f) (p‒1)-admissible Hall chains in normal subgroups, (g) powerful p-groups, (h) automorphisms of p-groups, (i) p-groups all of whose nonnormal subgroups are cyclic, (j) Alperin's problem on abelian subgroups of small index.

The book is suitable for researchers and graduate students of mathematics with a modest background on algebra. It also contains hundreds of original exercises (with difficult exercises being solved) and a comprehensive list of about 700 open problems.

Chapter

Contents

pp.:  1 – 5

Frontmatter

pp.:  1 – 1

Foreword

pp.:  9 – 15

Preface

pp.:  15 – 17

Introduction

pp.:  17 – 21

§3. Minimal classes

pp.:  78 – 89

§4. p-groups with cyclic Frattini subgroup

pp.:  89 – 93

§5. Hall’s enumeration principle

pp.:  93 – 101

§6. q'-automorphisms of q-groups

pp.:  101 – 111

§7. Regular p-groups

pp.:  111 – 118

§8. Pyramidal p-groups

pp.:  118 – 129

§9. On p-groups of maximal class

pp.:  129 – 134

§10. On abelian subgroups of p-groups

pp.:  134 – 148

§11. On the power structure of a p-group

pp.:  148 – 166

§12. Counting theorems for p-groups of maximal class

pp.:  166 – 171

§13. Further counting theorems

pp.:  171 – 181

§14. Thompson’s critical subgroup

pp.:  181 – 205

§15. Generators of p-groups

pp.:  205 – 209

§16. Classification of finite p-groups all of whose noncyclic subgroups are normal

pp.:  209 – 212

§17. Counting theorems for regular p-groups

pp.:  212 – 218

§18. Counting theorems for irregular p-groups

pp.:  218 – 222

§19. Some additional counting theorems

pp.:  222 – 235

§20. Groups with small abelian subgroups and partitions

pp.:  235 – 239

§21. On the Schur multiplier and the commutator subgroup

pp.:  239 – 242

§22. On characters of p-groups

pp.:  242 – 249

§23. On subgroups of given exponent

pp.:  249 – 262

§24. Hall’s theorem on normal subgroups of given exponent

pp.:  262 – 266

§25. On the lattice of subgroups of a group

pp.:  266 – 276

§26. Powerful p-groups

pp.:  276 – 282

§27. p-groups with normal centralizers of all elements

pp.:  282 – 295

§28. p-groups with a uniqueness condition for nonnormal subgroups

pp.:  295 – 299

§29. On isoclinism

pp.:  299 – 305

§30. On p-groups with few nonabelian subgroups of order pp and exponent p

pp.:  305 – 309

§31. On p-groups with small p0-groups of operators

pp.:  309 – 321

§32. W. Gaschütz’s and P. Schmid’s theorems on p-automorphisms of p-groups

pp.:  321 – 329

§33. Groups of order pm with automorphisms of order pm-1, pm-2 or pm-3

pp.:  329 – 334

§34. Nilpotent groups of automorphisms

pp.:  334 – 338

§35. Maximal abelian subgroups of p-groups

pp.:  338 – 346

§36. Short proofs of some basic characterization theorems of finite p-group theory

pp.:  346 – 353

§37. MacWilliams’ theorem

pp.:  353 – 365

§38. p-groups with exactly two conjugate classes of subgroups of small orders and exponentp > 2

pp.:  365 – 368

§39. Alperin’s problem on abelian subgroups of small index

pp.:  368 – 371

§40. On breadth and class number of p-groups

pp.:  371 – 375

§41. Groups in which every two noncyclic subgroups of the same order have the same rank

pp.:  375 – 378

§42. On intersections of some subgroups

pp.:  378 – 382

§43. On 2-groups with few cyclic subgroups of given order

pp.:  382 – 385

§44. Some characterizations of metacyclic p-groups

pp.:  385 – 392

§45. A counting theorem for p-groups of odd order

pp.:  392 – 397

Appendix 1. The Hall–Petrescu formula

pp.:  397 – 399

Appendix 2. Mann’s proof of monomiality of p-groups

pp.:  399 – 403

Appendix 3. Theorems of Isaacs on actions of groups

pp.:  403 – 405

Appendix 4. Freiman’s number-theoretical theorems

pp.:  405 – 413

Appendix 5. Another proof of Theorem 5.4

pp.:  413 – 419

Appendix 6. On the order of p-groups of given derived length

pp.:  419 – 421

Appendix 7. Relative indices of elements of p-groups

pp.:  421 – 425

Appendix 8. p-groups withabsolutely regular Frattini subgroup

pp.:  425 – 429

Appendix 9. On characteristic subgroups of metacyclic groups

pp.:  429 – 432

Appendix 10. On minimal characters of p-groups

pp.:  432 – 437

Appendix 11. On sums of degrees of irreducible characters

pp.:  437 – 439

Appendix 12. 2-groups whose maximal cyclic subgroups of order > 2 are self-centralizing

pp.:  439 – 442

Appendix 13. Normalizers of Sylow p-subgroups of symmetric groups

pp.:  442 – 445

Appendix 14. 2-groups with an involution contained in only one subgroup of order 4

pp.:  445 – 451

Appendix 15. A criterion for a group to be nilpotent

pp.:  451 – 453

Research problems and themes I

pp.:  453 – 457

Backmatter

pp.:  457 – 500

LastPages

pp.:  500 – 533

The users who browse this book also browse