Description
This is the first of three volumes of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this monograph include: (a) counting of subgroups, with almost all main counting theorems being proved, (b) regular p-groups and regularity criteria, (c) p-groups of maximal class and their numerous characterizations, (d) characters of p-groups, (e) p-groups with large Schur multiplier and commutator subgroups, (f) (p‒1)-admissible Hall chains in normal subgroups, (g) powerful p-groups, (h) automorphisms of p-groups, (i) p-groups all of whose nonnormal subgroups are cyclic, (j) Alperin's problem on abelian subgroups of small index.
The book is suitable for researchers and graduate students of mathematics with a modest background on algebra. It also contains hundreds of original exercises (with difficult exercises being solved) and a comprehensive list of about 700 open problems.
Chapter
§3. Minimal classes
pp.:
78 – 89
§4. p-groups with cyclic Frattini subgroup
pp.:
89 – 93
§5. Hall’s enumeration principle
pp.:
93 – 101
§6. q'-automorphisms of q-groups
pp.:
101 – 111
§7. Regular p-groups
pp.:
111 – 118
§8. Pyramidal p-groups
pp.:
118 – 129
§9. On p-groups of maximal class
pp.:
129 – 134
§10. On abelian subgroups of p-groups
pp.:
134 – 148
§11. On the power structure of a p-group
pp.:
148 – 166
§12. Counting theorems for p-groups of maximal class
pp.:
166 – 171
§13. Further counting theorems
pp.:
171 – 181
§14. Thompson’s critical subgroup
pp.:
181 – 205
§15. Generators of p-groups
pp.:
205 – 209
§16. Classification of finite p-groups all of whose noncyclic subgroups are normal
pp.:
209 – 212
§17. Counting theorems for regular p-groups
pp.:
212 – 218
§18. Counting theorems for irregular p-groups
pp.:
218 – 222
§19. Some additional counting theorems
pp.:
222 – 235
§20. Groups with small abelian subgroups and partitions
pp.:
235 – 239
§21. On the Schur multiplier and the commutator subgroup
pp.:
239 – 242
§22. On characters of p-groups
pp.:
242 – 249
§23. On subgroups of given exponent
pp.:
249 – 262
§24. Hall’s theorem on normal subgroups of given exponent
pp.:
262 – 266
§25. On the lattice of subgroups of a group
pp.:
266 – 276
§26. Powerful p-groups
pp.:
276 – 282
§27. p-groups with normal centralizers of all elements
pp.:
282 – 295
§28. p-groups with a uniqueness condition for nonnormal subgroups
pp.:
295 – 299
§29. On isoclinism
pp.:
299 – 305
§30. On p-groups with few nonabelian subgroups of order pp and exponent p
pp.:
305 – 309
§31. On p-groups with small p0-groups of operators
pp.:
309 – 321
§32. W. Gaschütz’s and P. Schmid’s theorems on p-automorphisms of p-groups
pp.:
321 – 329
§33. Groups of order pm with automorphisms of order pm-1, pm-2 or pm-3
pp.:
329 – 334
§34. Nilpotent groups of automorphisms
pp.:
334 – 338
§35. Maximal abelian subgroups of p-groups
pp.:
338 – 346
§36. Short proofs of some basic characterization theorems of finite p-group theory
pp.:
346 – 353
§37. MacWilliams’ theorem
pp.:
353 – 365
§38. p-groups with exactly two conjugate classes of subgroups of small orders and exponentp > 2
pp.:
365 – 368
§39. Alperin’s problem on abelian subgroups of small index
pp.:
368 – 371
§40. On breadth and class number of p-groups
pp.:
371 – 375
§41. Groups in which every two noncyclic subgroups of the same order have the same rank
pp.:
375 – 378
§42. On intersections of some subgroups
pp.:
378 – 382
§43. On 2-groups with few cyclic subgroups of given order
pp.:
382 – 385
§44. Some characterizations of metacyclic p-groups
pp.:
385 – 392
§45. A counting theorem for p-groups of odd order
pp.:
392 – 397
Appendix 1. The Hall–Petrescu formula
pp.:
397 – 399
Appendix 2. Mann’s proof of monomiality of p-groups
pp.:
399 – 403
Appendix 3. Theorems of Isaacs on actions of groups
pp.:
403 – 405
Appendix 4. Freiman’s number-theoretical theorems
pp.:
405 – 413
Appendix 5. Another proof of Theorem 5.4
pp.:
413 – 419
Appendix 6. On the order of p-groups of given derived length
pp.:
419 – 421
Appendix 7. Relative indices of elements of p-groups
pp.:
421 – 425
Appendix 8. p-groups withabsolutely regular Frattini subgroup
pp.:
425 – 429
Appendix 9. On characteristic subgroups of metacyclic groups
pp.:
429 – 432
Appendix 10. On minimal characters of p-groups
pp.:
432 – 437
Appendix 11. On sums of degrees of irreducible characters
pp.:
437 – 439
Appendix 12. 2-groups whose maximal cyclic subgroups of order > 2 are self-centralizing
pp.:
439 – 442
Appendix 13. Normalizers of Sylow p-subgroups of symmetric groups
pp.:
442 – 445
Appendix 14. 2-groups with an involution contained in only one subgroup of order 4
pp.:
445 – 451
Appendix 15. A criterion for a group to be nilpotent
pp.:
451 – 453
Research problems and themes I
pp.:
453 – 457
Backmatter
pp.:
457 – 500