Fibonacci and Lucas Numbers with Applications ( Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts )

Publication series :Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts

Author: Thomas Koshy  

Publisher: John Wiley & Sons Inc‎

Publication year: 2011

E-ISBN: 9781118031315

P-ISBN(Hardback):  9780471399698

Subject: O156.1 Elementary Number Theory

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

The first comprehensive survey of mathematics' most fascinating number sequences
Fibonacci and Lucas numbers have intrigued amateur and professional mathematicians for centuries. This volume represents the first attempt to compile a definitive history and authoritative analysis of these famous integer sequences, complete with a wealth of exciting applications, enlightening examples, and fun exercises that offer numerous opportunities for exploration and experimentation.
The author has assembled a myriad of fascinating properties of both Fibonacci and Lucas numbers-as developed by a wide range of sources-and catalogued their applications in a multitude of widely varied disciplines such as art, stock market investing, engineering, and neurophysiology. Most of the engaging and delightful material here is easily accessible to college and even high school students, though advanced material is included to challenge more sophisticated Fibonacci enthusiasts. A historical survey of the development of Fibonacci and Lucas numbers, biographical sketches of intriguing personalities involved in developing the subject, and illustrative examples round out this thorough and amusing survey. Most chapters conclude with numeric and theoretical exercises that do not rely on long and tedious proofs of theorems. Highlights include:
* Balanced blend of theory and real-world applications
* Excellent reference material for student reports and projects
* User-friendly, informal, and entertaining writing style
* Historical interjections and short biographies that add a richer perspective to the topic
* Reference sections providing important symbols, problem solutions, and fundamental properties from the theory of numbers and matrices
Fibonacci and Lucas Numbers with Applications provides mathematicians with a wealth of reference material in one convenient volume and presents an in-depth and entertaining resource for enthusiasts at every level and from any background.

Chapter

CONTENTS

pp.:  1 – 9

Preface

pp.:  9 – 13

List of Symbols

pp.:  13 – 17

1. Leonardo Fibonacci

pp.:  17 – 21

2. The Rabbit Problem

pp.:  21 – 24

3. Fibonacci Numbers in Nature

pp.:  24 – 36

4. Fibonacci Numbers: Additional Occurrences

pp.:  36 – 71

5. Fibonacci and Lucas Identities

pp.:  71 – 89

6. Geometric Paradoxes

pp.:  89 – 120

7. Generalized Fibonacci Numbers

pp.:  120 – 129

8. Additional Fibonacci and Lucas Formulas

pp.:  129 – 136

9. The Euclidean Algorithm

pp.:  136 – 152

10. Solving Recurrence Relations

pp.:  152 – 162

11. Completeness Theorems

pp.:  162 – 167

12. Pascal's Triangle

pp.:  167 – 171

13. Pascal-Like Triangles

pp.:  171 – 184

14. Additional Pascal-Like Triangles

pp.:  184 – 200

15. Hosoya's Triangle

pp.:  200 – 207

16. Divisibility Properties

pp.:  207 – 216

17. Generalized Fibonacci Numbers Revisited

pp.:  216 – 231

18. Generating Functions

pp.:  231 – 235

19. Generating Functions Revisited

pp.:  235 – 247

20. The Golden Ratio

pp.:  247 – 259

21. The Golden Ratio Revisited

pp.:  259 – 268

22. Golden Triangles

pp.:  268 – 287

23. Golden Rectangles

pp.:  287 – 293

24. Fibonacci Geometry

pp.:  293 – 314

25. Regular Pentagons

pp.:  314 – 328

26. The Golden Ellipse and Hyperbola

pp.:  328 – 348

27. Continued Fractions

pp.:  348 – 352

28. Weighted Fibonacci and Lucas Sums

pp.:  352 – 360

29. Fibonacci and Lucas Sums Revisited

pp.:  360 – 369

30. The Knapsack Problem

pp.:  369 – 376

31. Fibonacci Magic Squares

pp.:  376 – 380

32. Fibonacci Matrices

pp.:  380 – 382

33. Fibonacci Determinants

pp.:  382 – 407

34. Fibonacci and Lucas Congruences

pp.:  407 – 422

35. Fibonacci and Lucas Periodicity

pp.:  422 – 435

36. Fibonacci and Lucas Series

pp.:  435 – 444

37. Fibonacci Polynomials

pp.:  444 – 463

38. Lucas Polynomials

pp.:  463 – 479

39. Jacobsthal Polynomials

pp.:  479 – 489

40. Zeros of Fibonacci and Lucas Polynomials

pp.:  489 – 497

41. Morgan-Voyce Polynomials

pp.:  497 – 500

42. Fibonometry

pp.:  500 – 516

43. Fibonacci and Lucas Subscripts

pp.:  516 – 531

44. Gaussian Fibonacci and Lucas Numbers

pp.:  531 – 538

45. Analytic Extensions

pp.:  538 – 543

46. Tribonacci Numbers

pp.:  543 – 547

47. Tribonacci Polynomials

pp.:  547 – 553

Appendix

pp.:  553 – 557

References

pp.:  557 – 582

Solutions to Odd-Numbered Exercises

pp.:  582 – 597

Index

pp.:  597 – 661

LastPages

pp.:  661 – 676

The users who browse this book also browse