Igneous and Metamorphic Petrology

Author: Myron G. Best  

Publisher: John Wiley & Sons Inc‎

Publication year: 2009

E-ISBN: 9781444311297

P-ISBN(Paperback): 9781405105880

P-ISBN(Hardback):  9781405105880

Subject: P588 rock classification

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Igneous and metamorphic petrology has over the last twenty years expanded rapidly into a broad, multifaceted and increasingly quantitative science. Advances in geochemistry, geochronology, and geophysics, as well as the appearance of new analytical tools, have all contributed to new ways of thinking about the origin and evolution of magmas, and the processes driving metamorphism.

This book is designed to give students a balanced and comprehensive coverage of these new advances, as well as a firm grounding in the classical aspects of igneous and metamorphic petrology. The emphasis throughout is on the processes controlling petrogenesis, but care is taken to present the important descriptive information so crucial to interpretation.


  • One of the most up-to-date synthesis of igneous and metamorphic petrology available.
  • Emphasis throughout on latest experimental and field data.
  • Igneous and metamorphic sections can be used independently if necessary.

Chapter

CONTENTS

pp.:  1 – 7

PREFACE

pp.:  7 – 21

1.1.1 Forms of Energy

pp.:  26 – 26

1.1.3 Heat Flow in the Earth

pp.:  27 – 27

1.1.5 Energy Budget of the Earth

pp.:  32 – 33

1.2 GRAVITY, PRESSURE, AND GEOBARIC GRADIENT

pp.:  33 – 34

1.4 ROCK PROPERTIES AND THEIR SIGNIFICANCE

pp.:  34 – 35

1.3 ROCK-FORMING PROCESSES AS CHANGING STATES OF GEOLOGIC SYSTEMS

pp.:  34 – 34

1.4.1 Composition

pp.:  35 – 36

1.4.2 Field Relations

pp.:  36 – 37

1.4.3 Fabric

pp.:  37 – 38

1.5 HOW PETROLOGISTS STUDY ROCKS

pp.:  38 – 38

CHAPTER 2 Composition and Classification of Magmatic Rocks

pp.:  38 – 40

2.1.2 Analyses

pp.:  40 – 41

2.1.1 Sampling

pp.:  40 – 40

2.1 ANALYTICAL PROCEDURES

pp.:  40 – 40

2.2 MINERAL COMPOSITION OF MAGMATIC ROCKS

pp.:  41 – 46

2.2.1 Glass

pp.:  46 – 46

2.3 CHEMICAL COMPOSITION OF MAGMATIC ROCKS

pp.:  46 – 47

2.3.1 Variation Diagrams

pp.:  47 – 47

2.3.2 Continuous Spectrum of Rock Compositions

pp.:  47 – 48

2.4 CLASSIFICATION OF MAGMATIC ROCKS

pp.:  48 – 49

2.4.1 Classification Based on Fabric

pp.:  49 – 51

2.4.3 Classification Based on Mineralogical and Modal Composition

pp.:  51 – 52

2.4.2 Classification Based on Field Relations

pp.:  51 – 51

2.4.4 Classification Based on Whole-Rock Chemical Composition

pp.:  52 – 54

2.4.5 Rock Suites

pp.:  54 – 59

2.4.6 Classification of Basalt

pp.:  59 – 61

2.5.1 Partition Coefficients and Trace Element Compatibility

pp.:  61 – 62

2.5 TRACE ELEMENTS

pp.:  61 – 61

2.5.2 Rare Earth Elements

pp.:  62 – 64

2.5.3 Other Normalized Trace Element Diagrams

pp.:  64 – 66

2.6 ISOTOPES

pp.:  66 – 68

2.6.1 Stable Isotopes

pp.:  68 – 68

2.6.2 Radiogenic Isotopes

pp.:  68 – 69

2.6.3 Cosmogenic Isotopes: Beryllium

pp.:  69 – 71

CHAPTER 3 Thermodynamics and Kinetics: An Introduction

pp.:  71 – 75

3.2 ELEMENTARY CONCEPTS OF THERMODYNAMICS

pp.:  75 – 76

3.1 WHY IS THERMODYNAMICS IMPORTANT?

pp.:  75 – 75

3.2.2 First Law of Thermodynamics

pp.:  76 – 77

3.2.1 Thermodynamic States, Processes, and State Variables

pp.:  76 – 76

3.2.3 Enthalpy

pp.:  77 – 77

3.2.4 Entropy and the Second and Third Laws of Thermodynamics

pp.:  77 – 78

3.2.5 Gibbs Free Energy

pp.:  78 – 79

3.3 STABILITY (PHASE) DIAGRAMS

pp.:  79 – 80

3.3.1 Slope of the Melting Curve

pp.:  80 – 81

3.3.2 Determination of Phase Diagrams

pp.:  81 – 82

3.4 THERMODYNAMICS OF SOLUTIONS: SOME BASIC CONCEPTS

pp.:  82 – 83

3.4.2 Partial Molar Volume

pp.:  83 – 83

3.4.1 Components and Mole Fractions

pp.:  83 – 83

3.4.3 Partial Molar Gibbs Free Energy: The Chemical Potential

pp.:  83 – 84

3.4.4 P-T-X Phase Diagram

pp.:  84 – 85

3.5 APPLICATION OF THERMODYNAMICS TO SOLUTIONS

pp.:  85 – 85

3.5.1 Fugacity and Activity

pp.:  85 – 85

3.5.2 Equilibrium Constants

pp.:  85 – 86

3.5.3 Silica Activity, Silica Buffers, and Silica Saturation

pp.:  86 – 87

3.5.4 Oxygen Buffers

pp.:  87 – 88

3.5.5 Fe-Ti Oxide Buffers: Oxygen Geobarometers and Geothermometers

pp.:  88 – 90

3.6 KINETICS

pp.:  90 – 90

3.6.1 Activation Energy

pp.:  90 – 91

3.6.2 Overstepping and Metastable Persistence and Growth

pp.:  91 – 92

CHAPTER 4 Silicate Melts and Volatile Fluids in Magma Systems

pp.:  92 – 96

4.1.1 Atomic Structure of Melts

pp.:  96 – 97

4.1 NATURE OF MAGMA

pp.:  96 – 96

4.2 VOLATILE FLUIDS IN MELTS

pp.:  97 – 99

4.2.1 Nature of Volatiles

pp.:  99 – 99

4.2.2 Solubilities of Volatiles in Silicate Melts

pp.:  99 – 100

4.2.3 Exsolution of Volatiles from a Melt

pp.:  100 – 103

4.3 CONSEQUENCES OF FLUID EXSOLUTION FROM MELTS

pp.:  103 – 104

4.3.1 Explosive Volcanism

pp.:  104 – 104

4.3.2 Global Atmosphere and Climate

pp.:  104 – 106

4.3.3 Fumaroles, Hydrothermal Solutions, Ore Deposits, and Geothermal Reservoirs

pp.:  106 – 108

CHAPTER 5 Crystal-Melt Equilibria in Magmatic Systems

pp.:  108 – 111

5.2 MELTING OF A PURE MINERAL AND POLYMORPHISM

pp.:  111 – 113

5.1 PHASE DIAGRAMS

pp.:  111 – 111

5.1.1 Phase Rule

pp.:  111 – 111

5.2.2 Melting of a Pure Mineral in the Presence of Volatiles

pp.:  113 – 113

5.3 PHASE RELATIONS IN BINARY SYSTEMS

pp.:  113 – 114

5.2.1 Volatile-Free Equilibria

pp.:  113 – 113

5.3.1 Basic Concepts: CaMgSi2O6 (Di)-CaAl2Si2O8 (An) System at P 1 atm

pp.:  114 – 114

5.3.2 Mg2SiO4-SiO2 System at 1 atm

pp.:  114 – 117

5.4 CRYSTAL-MELT EQUILIBRIA IN REAL BASALT MAGMAS

pp.:  117 – 122

5.4.2 Basalt Magmas at High Pressures and High Water Concentrations

pp.:  122 – 123

5.4.1 Makaopuhi Basalt

pp.:  122 – 122

5.5 FELDSPAR-MELT EQUILIBRIA

pp.:  123 – 124

5.5.2 NaAlSi3O8 (Ab)-CaAl2Si2O8 (An) Binary Plagioclase System: Complete Solid Solution

pp.:  124 – 125

5.5.1 KAlSi3O8 (Kf)-CaAl2Si2O8 (An) Binary System: Limited Solid Solution

pp.:  124 – 124

5.5.3 NaAlSi3O8 (Ab)-KAlSi3O8 (Kf) Binary Alkali Feldspar System

pp.:  125 – 126

5.5.4 KAlSi3O8 (Kf)-NaAlSi3O8 (Ab)-CaAl2Si2O8 (An) Ternary Feldspar System

pp.:  126 – 128

5.5.5 KAlSi3O8 (Kf)-NaAlSi3O8 (Ab)-SiO2 (silica)-H2O: The Granite System

pp.:  128 – 132

5.6 CRYSTAL-MELT EQUILIBRIA INVOLVING ANHYDROUS MAFIC MINERALS: OLIVINE AND PYROXENE

pp.:  132 – 136

5.7 CRYSTAL-MELT EQUILIBRIA IN HYDROUS MAGMA SYSTEMS

pp.:  136 – 137

5.7.1 Equilibria in the Granodiorite-Water System

pp.:  137 – 137

5.7.2 Equilibria Involving Melt and Micas and Amphiboles

pp.:  137 – 138

5.8 GEOTHERMOMETERS AND GEOBAROMETERS

pp.:  138 – 141

5.8.1 Assessing States of Equilibrium in Rocks

pp.:  141 – 141

5.9 A BRIEF COMMENT REGARDING SUBSOLIDUS REACTIONS IN MAGMATIC ROCKS

pp.:  141 – 142

CHAPTER 6 Chemical Dynamics of Melts and Crystals

pp.:  142 – 146

6.2 CHEMICAL DIFFUSION

pp.:  146 – 150

6.1 VISCOSITY OF MELTS

pp.:  146 – 146

6.2.1 Types of Diffusion

pp.:  150 – 150

6.2.2 Theory and Measurement

pp.:  150 – 151

6.2.3 Factors Governing Diffusivities

pp.:  151 – 152

6.2.4 Average Diffusion Distance

pp.:  152 – 153

6.2.5 Soret Diffusion

pp.:  153 – 153

6.3 DIFFUSION OF HEAT

pp.:  153 – 154

6.3.1 The Role of Body Shape on Conductive Cooling

pp.:  154 – 155

6.4 INTERFACIAL ENERGY

pp.:  155 – 155

6.5 CRYSTALLIZATION

pp.:  155 – 157

6.5.3 Crystal Growth

pp.:  157 – 159

6.5.1 Why Is It Important to Study Nucleation and Crystallization?

pp.:  157 – 157

6.5.2 Nucleation

pp.:  157 – 157

6.5.4 Crystal Size in Magmatic Rocks

pp.:  159 – 161

6.6 SECONDARY OVERPRINTING PROCESSES MODIFYING PRIMARY CRYSTAL SIZE AND SHAPE

pp.:  161 – 163

6.6.2 Textural Equilibration: Grain Boundary Modification

pp.:  163 – 164

6.6.1 Crystal Dissolution

pp.:  163 – 163

6.7 VESICULATION AND FRAGMENTATION OF MAGMA

pp.:  164 – 166

6.7.1 Nucleation and Growth of Bubbles—Vesiculation

pp.:  166 – 166

6.7.2 Melt Fragmentation and Explosive Volcanism

pp.:  166 – 169

CHAPTER 7 Kinetic Paths and Fabric of Magmatic Rocks

pp.:  169 – 172

7.1 FABRICS RELATED TO CRYSTALLIZATION PATH: CRYSTALLINITY AND GRAIN SIZE

pp.:  172 – 175

7.1.1 Glassy Texture

pp.:  175 – 175

7.1.2 Aphanitic Texture

pp.:  175 – 177

7.1.3 Phaneritic Texture

pp.:  177 – 179

7.1.4 Porphyritic Texture

pp.:  179 – 181

7.1.5 Poikilitic and Ophitic Textures

pp.:  181 – 182

7.3 FABRICS RELATED TO CRYSTALLIZATION PATH: INHOMOGENEOUS GRAINS

pp.:  182 – 184

7.2 FABRICS RELATED TO CRYSTALLIZATION PATH: GRAIN SHAPE

pp.:  182 – 182

7.3.3 Subsolidus Decomposition and Exsolution in Unstable Minerals

pp.:  184 – 185

7.3.2 Reaction Rims

pp.:  184 – 184

7.3.1 Zoned Crystals

pp.:  184 – 184

7.4 FABRIC RELATED TO TEXTURAL EQUILIBRATION: SECONDARY GRAIN-BOUNDARY MODIFICATION

pp.:  185 – 186

7.5 A WORD OF CAUTION ON THE INTERPRETATION OF CRYSTALLINE TEXTURES

pp.:  186 – 187

7.5.1 Magmatic Rock Texture and Order of Crystallization

pp.:  187 – 187

7.6 FABRICS RELATED TO NONEXPLOSIVE EXSOLUTION OF VOLATILE FLUIDS

pp.:  187 – 189

7.7 VOLCANICLASTIC FABRICS RELATED TO FRAGMENTATION OF MAGMA

pp.:  189 – 190

7.7.1 Pyroclastic Processes

pp.:  190 – 191

7.7.2 Autoclastic Processes

pp.:  191 – 193

7.8 FABRICS RELATED TO CONSOLIDATION OF VOLCANICLASTS INTO SOLID ROCK

pp.:  193 – 195

7.9 ANISOTROPIC FABRICS

pp.:  195 – 195

7.9.1 Descriptive Geometric Aspects

pp.:  195 – 195

7.9.2 Origin

pp.:  195 – 199

7.10 INCLUSIONS

pp.:  199 – 205

CHAPTER 8 Physical and Thermal Dynamics of Bodies of Magma

pp.:  205 – 207

8.1.1 Concepts of Stress

pp.:  207 – 207

8.1 STRESS AND DEFORMATION

pp.:  207 – 207

8.1.2 Deformation

pp.:  207 – 208

8.1.3 Ideal Response to Stress

pp.:  208 – 209

8.2 RHEOLOGY OF ROCKS AND MAGMAS

pp.:  209 – 210

8.2.1 Rheology of Rocks

pp.:  210 – 211

8.2.2 Non-Newtonian Rheology of Magma

pp.:  211 – 214

8.2.3 Deformation and Flow of Magma

pp.:  214 – 215

8.3 DENSITY OF MAGMA AND BUOYANCY

pp.:  215 – 218

8.3.1 Density Determinations

pp.:  218 – 218

8.3.2 Densities of Minerals and Melts

pp.:  218 – 219

8.3.3 Buoyancy

pp.:  219 – 220

8.4 CONDUCTIVE HEAT TRANSFER

pp.:  220 – 221

8.4.1 Conductive Cooling Models

pp.:  221 – 222

8.5 ADVECTIVE HEAT TRANSFER

pp.:  222 – 223

8.6 MAGMA CONVECTION

pp.:  223 – 225

8.6.2 Thermochemical Convection in Crystallizing Magmas

pp.:  225 – 227

8.6.1 Thermal Convection in a Completely Molten Body of Melt

pp.:  225 – 225

8.6.3 Replenishment in Evolving Magma Chambers

pp.:  227 – 229

CHAPTER 9 Magma Ascent and Emplacement: Field Relations of Intrusions

pp.:  229 – 234

9.1.2 Magma Overpressure

pp.:  234 – 236

9.1.1 Neutral Buoyancy and the Crustal Density Filter

pp.:  234 – 234

9.1 MOVEMENT OF MAGMA IN THE EARTH

pp.:  234 – 234

9.1.3 Mechanisms of Magma Ascent

pp.:  236 – 237

9.2.2 Some Thermomechanical Concepts Pertaining to Emplacement of Sheet Intrusions

pp.:  237 – 240

9.2 SHEET INTRUSIONS (DIKES)

pp.:  237 – 237

9.2.1 Description and Terminology

pp.:  237 – 237

9.2.3 Geometry and Orientation of Sheet Intrusions

pp.:  240 – 242

9.2.4 Basalt Diking in Extensional Regimes

pp.:  242 – 244

9.3 DIAPIRS

pp.:  244 – 246

9.4 MAGMA EMPLACEMENT IN THE CRUST: PROVIDING THE SPACE

pp.:  246 – 248

9.4.1 Some Aspects of Granitic Plutons

pp.:  248 – 249

9.4.2 Emplacement Processes and Factors

pp.:  249 – 250

9.4.3 The Intrusion–Host Rock Interface

pp.:  250 – 260

CHAPTER 10 Magma Extrusion: Field Relations of Volcanic Rock Bodies

pp.:  260 – 265

10.1 OVERVIEW OF EXTRUSION: CONTROLS AND FACTORS

pp.:  265 – 265

10.1.1 Moving Magma to the Surface: What Allows Extrusion

pp.:  265 – 266

10.2 EFFUSIONS OF BASALTIC LAVA

pp.:  266 – 269

10.1.2 Two Types of Extrusions: Explosive and Effusive

pp.:  266 – 266

10.2.1 Types of Basaltic Lava Flows

pp.:  269 – 269

10.2.2 Columnar Joints

pp.:  269 – 273

10.2.3 Subaerial Lava Accumulations

pp.:  273 – 274

10.2.4 Submarine Basaltic Accumulations

pp.:  274 – 276

10.3 EFFUSIONS OF SILICIC LAVA

pp.:  276 – 278

10.3.2 Internal Fabric

pp.:  278 – 280

10.3.1 Morphological Characteristics and Growth

pp.:  278 – 278

10.4 EXPLOSIVE ERUPTIONS

pp.:  280 – 283

10.4.1 Explosive Mechanisms: Production of Pyroclasts

pp.:  283 – 283

10.4.2 Pyroclasts in Volcanic Plumes

pp.:  283 – 286

10.4.4 Explosive Style

pp.:  286 – 291

10.4.3 Pyroclast Transport and Deposition

pp.:  286 – 286

10.4.5 Pyroclastic Flows and Deposits: Overview

pp.:  291 – 294

10.4.6 Block-and-Ash Flows

pp.:  294 – 295

10.4.8 Calderas

pp.:  295 – 299

10.4.7 Ignimbrite-Forming Ash Flows

pp.:  295 – 295

10.4.9 Subaqueous Pyroclastic Flows

pp.:  299 – 301

10.5 OTHER VOLCANICLASTIC DEPOSITS

pp.:  301 – 302

10.5.2 Volcanic Debris Flows: Lahars

pp.:  302 – 302

10.5.1 Epiclastic Processes and Deposits

pp.:  302 – 302

10.5.3 Composite Volcanoes

pp.:  302 – 303

CHAPTER 11 Generation of Magma

pp.:  303 – 307

11.1.1 Temperature Increase, + T

pp.:  307 – 308

11.1 MELTING OF SOLID ROCK: CHANGES IN P, T, AND X

pp.:  307 – 307

11.1.2 Decompression, - P

pp.:  308 – 310

11.1.3 Changes in Water Concentration, + Xwater

pp.:  310 – 311

11.2 MANTLE SOURCE ROCK

pp.:  311 – 312

11.2.1 Mantle-Derived Inclusions

pp.:  312 – 313

11.2.2 Metasomatized and Enriched Mantle Rock

pp.:  313 – 315

11.3 GENERATION OF MAGMA IN MANTLE PERIDOTITE

pp.:  315 – 319

11.3.2 Fractional Partial Melting of Lherzolite

pp.:  319 – 321

11.3.1 Equilibrium (Batch) Partial Melting of Lherzolite

pp.:  319 – 319

11.3.4 Modeling Partial Melting Using Trace Elements

pp.:  321 – 323

11.3.3 Factors Controlling Partial Melt Composition

pp.:  321 – 321

11.3.5 Characteristics of Primary Magma

pp.:  323 – 324

11.4.1 Dehydration of Subducting Oceanic Crust

pp.:  324 – 325

11.4 MAGMA GENERATION IN SUBARC MANTLE WEDGE

pp.:  324 – 324

11.4.2 Magma Generation in the Mantle Wedge

pp.:  325 – 327

11.4.3 Partial Melting of Subducted Basaltic Oceanic Crust: Adakite

pp.:  327 – 329

11.5 GENERATION OF ALKALINE MAGMAS IN METASOMATICALLY ENRICHED MANTLE PERIDOTITE

pp.:  329 – 330

11.5.1 The Metasomatized Mantle Connection

pp.:  330 – 331

11.6 MAGMA GENERATION IN THE CONTINENTAL CRUST

pp.:  331 – 332

11.6.1 Partial Melting of Continental Source Rocks

pp.:  332 – 333

11.6.2 “Alphabet” Granitic Magmas: Contrasting Sources

pp.:  333 – 335

11.6.3 Crystalline Residues

pp.:  335 – 336

11.6.4 Melt Segregation

pp.:  336 – 337

CHAPTER 12 Differentiation of Magmas

pp.:  337 – 340

11.6.5 Felsic Magma Generation and the Mantle Connection

pp.:  337 – 337

12.1 USING VARIATION DIAGRAMS TO CHARACTERIZE DIFFERENTIATION PROCESSES

pp.:  340 – 341

12.2 CLOSED-SYSTEM MAGMATIC DIFFERENTIATION

pp.:  341 – 342

12.2.2 Physical Separation of Immiscible Melts

pp.:  342 – 346

12.2.1 Crystal-Melt Fractionation

pp.:  342 – 342

12.2.3 Fluid-Melt Separation: Pegmatites

pp.:  346 – 348

12.3 OPEN-SYSTEM DIFFERENTIATION: HYBRID MAGMAS

pp.:  348 – 349

12.3.1 Magma Mixing

pp.:  349 – 349

12.3.2 Assimilation

pp.:  349 – 352

12.4 DIFFERENTIATION IN BASALTIC INTRUSIONS

pp.:  352 – 353

12.4.2 Layered Intrusions

pp.:  353 – 355

12.4.1 Palisades Sill

pp.:  353 – 353

12.4.3 Oceanic-Ridge Magma Chambers

pp.:  355 – 361

12.5 ORIGIN OF THE CALC-ALKALINE DIFFERENTIATION TREND

pp.:  361 – 362

12.5.1 Tonga–Kermadec–New Zealand Arc

pp.:  362 – 363

CHAPTER 13 Magmatic Petrotectonic Associations

pp.:  363 – 372

12.5.2 Factors Controlling Development of the Calc-Alkaline Trend

pp.:  363 – 363

13.1 OCEANIC SPREADING RIDGES AND RELATED BASALTIC ROCKS

pp.:  372 – 373

13.1.1 Mid-Ocean Ridge Basalt (MORB)

pp.:  373 – 374

13.1.2 Iceland

pp.:  374 – 377

13.1.3 Mantle Reservoirs

pp.:  377 – 378

13.2.1 Character of Volcanic Rocks

pp.:  378 – 380

13.2 MANTLE PLUMES AND OCEANIC ISLAND VOLCANIC ROCKS

pp.:  378 – 378

13.2.2 Hawaiian Islands: Tholeiitic and Alkaline Associations

pp.:  380 – 383

13.2.3 Highly Alkaline Rocks on Other Oceanic Islands

pp.:  383 – 386

13.3 PLUME HEADS AND BASALT FLOOD PLATEAU LAVAS

pp.:  386 – 388

13.3.2 Continental Flood Basalt Plateaus

pp.:  388 – 389

13.3.1 Oceanic Plateaus

pp.:  388 – 388

13.3.3 Continental Breakup

pp.:  389 – 393

13.4 ARC MAGMATISM: OVERVIEW

pp.:  393 – 394

13.5 OCEANIC ISLAND ARCS

pp.:  394 – 395

13.5.1 Rock Associations

pp.:  395 – 396

13.5.2 Magma Evolution

pp.:  396 – 398

13.5.3 Back-Arc Basins

pp.:  398 – 399

13.6 OPHIOLITE

pp.:  399 – 400

13.6.2 Origin and Emplacement

pp.:  400 – 401

13.6.1 Characteristics

pp.:  400 – 400

13.7 CALC-ALKALINE CONTINENTAL MARGIN MAGMATIC ARCS

pp.:  401 – 401

13.7.1 Volcanic Arcs on Continental Margins

pp.:  401 – 402

13.7.2 Plutonic Arcs on Continental Margins: Granitic Batholiths

pp.:  402 – 406

13.8 GRANITES IN CONTINENT-CONTINENT COLLISION ZONES

pp.:  406 – 410

13.9 ANOROGENIC A-TYPE FELSIC ROCKS

pp.:  410 – 411

13.9.1 Characteristics

pp.:  411 – 412

13.9.2 Petrogenesis

pp.:  412 – 413

13.9.3 Anorogenic Ring Complexes in Nigeria and Niger

pp.:  413 – 414

13.10 GRANITES AND GRANITES

pp.:  414 – 414

13.11 CONTINENTAL RIFT ASSOCIATIONS: BIMODAL AND ALKALINE ROCKS

pp.:  414 – 416

13.11.1 Transitions from Continental Arc to Rift Associations in Western North America

pp.:  416 – 418

13.11.2 Magmatism in the East African Rift System

pp.:  418 – 419

13.12 ALKALINE ORPHANS, MOSTLY IN STABLE CRATONS

pp.:  419 – 421

13.12.1 Lamprophyres

pp.:  421 – 422

CHAPTER 14 Metamorphic Rocks and Metamorphism: An Overview

pp.:  422 – 428

13.12.2 Lamproite, Orangeite, and Kimberlite Clans

pp.:  422 – 422

14.1 EXAMPLES OF EQUILIBRATION IN METAMORPHIC ROCKS

pp.:  428 – 429

14.1.1 Incipient Metamorphism: Crystallization of New Minerals and Preservation of Relict Protolith Fabrics

pp.:  429 – 429

14.1.2 Recrystallization under Hydrostatic Conditions: Newly Imposed Granoblastic Fabric

pp.:  429 – 434

14.1.3 Recrystallization under Nonhydrostatic States of Stress: Tectonite Fabric

pp.:  434 – 438

14.1.4 Crystalloblastic Series

pp.:  438 – 445

14.1.5 Metasomatism

pp.:  445 – 446

14.2 THE NATURE OF METAMORPHISM

pp.:  446 – 448

14.2.2 Types of Metamorphism Based on Metamorphic Conditions

pp.:  448 – 450

14.2.1 The Nature of the Protolith

pp.:  448 – 448

14.2.3 Geologic Field Settings: Metamorphic Terranes

pp.:  450 – 450

14.2.4 Metamorphic Grade

pp.:  450 – 454

14.2.5 Metamorphic Zones

pp.:  454 – 455

14.2.6 Intensive Variables and Stable Mineral Assemblages

pp.:  455 – 460

14.2.7 Metamorphic Facies

pp.:  460 – 461

14.2.8 Metamorphic Facies Series

pp.:  461 – 462

14.3 WHY STUDY METAMORPHIC ROCKS? METAMORPHIC PETROLOGY AND CONTINENTAL EVOLUTION AND TECTONICS

pp.:  462 – 465

14.2.9 Metamorphic Field Gradients and P–T–t Paths

pp.:  462 – 462

CHAPTER 15 Petrography of Metamorphic Rocks: Fabric, Composition, and Classification

pp.:  465 – 471

15.1.1 Anisotropic Fabrics of Tectonites

pp.:  471 – 472

15.1 METAMORPHIC FABRICS

pp.:  471 – 471

15.1.2 Summary List of Metamorphic Textures

pp.:  472 – 476

15.2 CLASSIFICATION AND DESCRIPTION OF METAMORPHIC ROCKS

pp.:  476 – 479

15.2.1 Metamorphic Rock Names Based on Fabric

pp.:  479 – 479

15.2.2 Strongly Foliated Rocks

pp.:  479 – 480

15.2.3 Weakly Foliated Rocks

pp.:  480 – 481

15.2.4 Nonfoliated Mafic Rocks

pp.:  481 – 484

15.2.5 Nonfoliated High-Grade Felsic Rocks

pp.:  484 – 485

15.2.6 Other Nonfoliated Metamorphic Rocks

pp.:  485 – 486

15.2.7 Serpentinite

pp.:  486 – 487

15.2.8 Metasomatic Rock Types

pp.:  487 – 489

15.2.9 Misfits

pp.:  489 – 489

15.2.10 High-Strain-Rate Rocks in Fault and Shear Zones

pp.:  489 – 489

15.2.11 Veins

pp.:  489 – 490

15.3.1 Fundamentals

pp.:  490 – 490

15.3 GRAPHICAL REPRESENTATION OF MINERAL ASSEMBLAGES IN COMPOSITION DIAGRAMS

pp.:  490 – 490

15.3.2 Examples of Composition Diagrams in Hypothetical Three-Component Systems

pp.:  490 – 491

15.3.3 Compatibility Diagrams for Metamorphic Rocks

pp.:  491 – 493

CHAPTER 16 Metamorphic Mineral Reactions and Equilibria

pp.:  493 – 497

16.1 EQUILIBRIUM MINERAL ASSEMBLAGES

pp.:  497 – 498

16.2 OVERVIEW OF METAMORPHIC MINERAL REACTIONS

pp.:  498 – 499

16.3.1 The Al2SiO5 System

pp.:  499 – 500

16.3 POLYMORPHIC TRANSITIONS

pp.:  499 – 499

16.4 NET TRANSFER SOLID–SOLID REACTIONS

pp.:  500 – 503

16.4.1 Basic Relations in a System of Pure End-Member Phases

pp.:  503 – 503

16.4.2 Model Reactions in the Basalt–Granulite–Eclogite Transition

pp.:  503 – 505

16.5 CONTINUOUS REACTIONS BETWEEN CRYSTALLINE SOLID SOLUTIONS

pp.:  505 – 508

16.5.1 Solid Solution in the Continuous Net Transfer Reaction Plagioclase = Jadeitic Clinopyroxene + Quartz

pp.:  508 – 509

16.5.2 Continuous Exchange Reactions in Fe–Mg Solid Solutions

pp.:  509 – 509

16.6 SOLID–FLUID MINERAL REACTIONS

pp.:  509 – 512

16.6.2 Fundamental Concepts of Solid–Fluid Reactions

pp.:  512 – 515

16.6.1 Fluids in the Crust of the Earth

pp.:  512 – 512

16.6.3 Equilibria with Mixed-Volatile Fluids

pp.:  515 – 517

16.6.4 Local versus External Control of Fluid Composition during Devolatilization Reactions

pp.:  517 – 519

16.7 FLUID FLOW DURING METAMORPHISM OF THE CONTINENTAL CRUST

pp.:  519 – 522

16.7.1 Evidence for Fluid Flow

pp.:  522 – 522

16.7.2 Mechanics of Fluid Flow

pp.:  522 – 524

16.8 METASOMATISM

pp.:  524 – 528

16.8.2 The Thompson Model of Metasomatic Zoning and Local Equilibrium

pp.:  528 – 529

16.8.1 Ion Exchange Reactions in Open Metasomatic Systems

pp.:  528 – 528

16.8.3 Low-Variance Assemblages in Metasomatic Rocks

pp.:  529 – 530

16.9 REDOX MINERAL EQUILIBRIA

pp.:  530 – 532

16.8.4 Frames of Reference and the Isocon Diagram

pp.:  530 – 530

16.10 KINETICS AND MINERAL REACTIONS: WHAT ACTUALLY HAPPENS IN METAMORPHIC ROCKS

pp.:  532 – 533

16.11 PUTTING MINERAL EQUILIBRIA TO WORK: BROADER PETROLOGIC IMPLICATIONS

pp.:  533 – 535

16.10.1 Role of Fluids in the Mechanism of Metamorphic Reactions

pp.:  533 – 533

16.11.1 Isograds

pp.:  535 – 535

16.11.2 Evaluation of Intensive Variables during Metamorphism

pp.:  535 – 537

16.11.3 Mineral Thermobarometers

pp.:  537 – 538

CHAPTER 17 Evolution of Imposed Metamorphic Fabrics: Processes and Kinetics

pp.:  538 – 544

17.1 SOLID-STATE CRYSTALLIZATION UNDER STATIC CONDITIONS

pp.:  544 – 545

17.1.1 Nucleation and Growth

pp.:  545 – 546

17.1.2 Equilibration of Grain Size and Shape

pp.:  546 – 548

17.1.3 Intragrain Textural Features

pp.:  548 – 550

17.2 DUCTILE FLOW

pp.:  550 – 552

17.2.1 Diffusive Creep

pp.:  552 – 553

17.2.2 Intracrystalline Plastic Deformation

pp.:  553 – 556

17.2.3 Crystal Defects

pp.:  556 – 562

17.2.4 Recovery during Dislocation Creep

pp.:  562 – 565

17.2.6 Power Law in Ductile Flow

pp.:  565 – 567

17.2.5 Hydrolytic Weakening of Silicates during Plastic Slip

pp.:  565 – 565

17.3.1 Role of Fluids in Tectonite Fabric Development

pp.:  567 – 569

17.3 INTERACTIONS BETWEEN DEFORMATION, CRYSTALLIZATION, AND FLUIDS IN TECTONITES

pp.:  567 – 567

17.3.3 Pre-, Syn-, and Postkinematic Fabrics

pp.:  569 – 570

17.3.2 Timing of Deformation and Crystallization: Larger Scale Implications

pp.:  569 – 569

17.3.4 Polymetamorphism

pp.:  570 – 573

17.3.5 Shear-Sense Indicators

pp.:  573 – 575

17.3.6 Patterns of Deformation and Flow: Tectonic Significance of Fabric Geometry

pp.:  575 – 578

17.4 ORIGIN OF ANISOTROPIC FABRIC IN METAMORPHIC TECTONITES

pp.:  578 – 579

17.4.1 Preferred Dimensional Orientation of Mineral Grains

pp.:  579 – 580

17.4.3 Cleavage, Schistosity, and Compositional Layering

pp.:  580 – 582

17.4.2 Preferred Orientation of Crystal Lattices in Tectonites

pp.:  580 – 580

CHAPTER 18 Metamorphism at Convergent Plate Margins: P–T–t Paths, Facies, and Zones

pp.:  582 – 588

18.1 P–T–t PATHS

pp.:  588 – 589

18.1.2 Petrologic Determination of P–T–t Paths

pp.:  589 – 590

18.1.1 Thermal Considerations

pp.:  589 – 589

18.2 A BRIEF ANATOMICAL OVERVIEW OF METAMORPHISM IN OROGENS

pp.:  590 – 593

18.2.1 Specific Regional Metamorphic Terranes

pp.:  593 – 594

18.3 INTERMEDIATE- TO LOW-P METAMORPHIC ZONES AND FACIES

pp.:  594 – 600

18.3.2 P–T–t Paths and Chronology of Barrovian Metamorphism

pp.:  600 – 606

18.3.1 Pelitic Rocks in Typical Barrovian Zones at Intermediate Pressures

pp.:  600 – 600

18.3.3 Buchan Metamorphism

pp.:  606 – 607

18.3.4 Mineral Assemblages in Mafic Protoliths: A Brief Overview

pp.:  607 – 611

18.4 OCEAN-RIDGE METAMORPHISM

pp.:  611 – 613

18.3.5 Metabasites at Intermediate Pressures

pp.:  611 – 611

18.4.1 Petrology of Metamorphosed Seafloor Rocks

pp.:  613 – 614

18.5 INTACT SLABS OF OPHIOLITE

pp.:  614 – 616

18.6 NEAR-TRENCH METAMORPHIC ASSOCIATIONS

pp.:  616 – 618

18.6.3 Serpentinite

pp.:  618 – 620

18.6.1 The Franciscan Complex, California

pp.:  618 – 618

18.6.2 Mélange

pp.:  618 – 618

18.6.4 Subgreenschist Facies Rocks

pp.:  620 – 621

18.6.5 Metabasites at High Pressures

pp.:  621 – 623

18.6.6 P–T–t Paths and Tectonic Evolution of High P/ T Terranes

pp.:  623 – 624

18.7 ULTRAHIGH-P METAMORPHIC ROCKS

pp.:  624 – 625

18.7.1 Coesite and Diamond: Diagnostic UHP Minerals

pp.:  625 – 626

18.7.2 Dora Maira Massif in the Western Alps

pp.:  626 – 627

18.7.3 Dabie–Sulu Terranes

pp.:  627 – 629

18.7.4 Evolution of UHP Terranes

pp.:  629 – 630

CHAPTER 19 Precambrian Rock Associations

pp.:  630 – 634

19.1 THE YOUNG EARTH—A BRIEF OVERVIEW

pp.:  634 – 636

19.2 ARCHEAN GRANITOID–GREENSTONE TERRANES

pp.:  636 – 637

19.2.1 General Character of Greenstone Belts

pp.:  637 – 638

19.2.2 Itsaq Gneiss Complex, West Greenland: Earliest Record of Crustal Process at 3900–3600 Ma

pp.:  638 – 641

19.2.3 Kaapvaal Craton

pp.:  641 – 644

19.2.4 Yilgarn Craton

pp.:  644 – 645

19.2.5 Superior Province

pp.:  645 – 646

19.3 ARCHEAN VOLCANIC ROCKS

pp.:  646 – 647

19.3.1 Komatiite

pp.:  647 – 647

19.3.2 Basalts

pp.:  647 – 653

19.3.3 Archean Megacrystic Anorthosite

pp.:  653 – 654

19.3.4 Other Volcanic Rocks in Greenstone Belts

pp.:  654 – 656

19.4 ARCHEAN GRANITOIDS

pp.:  656 – 657

19.4.1 Tonalite–Trondhjemite–Granodiorite (TTG) Gneisses

pp.:  657 – 657

19.4.2 High-Mg Granitoids

pp.:  657 – 660

19.5.1 Grenville Province

pp.:  660 – 660

19.5 MID-PROTEROZOIC TECTONISM AND MAGMATISM

pp.:  660 – 660

19.4.3 Granite

pp.:  660 – 660

19.5.2 Massif-Type Anorthosite

pp.:  660 – 661

19.5.3 Rapakivi Granites

pp.:  661 – 668

19.6 GRANULITE-FACIES TERRANES IN ARCHEAN AND PROTEROZOIC CRATONS

pp.:  668 – 669

19.6.2 P–T Paths and Tectonic Evolution of Granulite-Facies Terranes

pp.:  669 – 670

19.6.1 Mineral Assemblages and Reactions

pp.:  669 – 669

19.7 PRECAMBRIAN BASALTIC INTRUSIONS

pp.:  670 – 672

19.8 MODELS FOR THE EVOLUTION OF THE PRECAMBRIAN CRUST

pp.:  672 – 673

19.8.1 Evolution of the Continental Crust

pp.:  673 – 675

APPENDIX A

pp.:  675 – 681

APPENDIX B

pp.:  681 – 685

REFERENCES CITED

pp.:  685 – 690

GLOSSARY

pp.:  690 – 715

INDEX

pp.:  715 – 741

Colour Plates

pp.:  741 – 755

LastPages

pp.:  755 – 758

The users who browse this book also browse


No browse record.