Chapter
1.1.5 Energy Budget of the Earth
pp.:
32 – 33
1.2 GRAVITY, PRESSURE, AND GEOBARIC GRADIENT
pp.:
33 – 34
1.4 ROCK PROPERTIES AND THEIR SIGNIFICANCE
pp.:
34 – 35
1.3 ROCK-FORMING PROCESSES AS CHANGING STATES OF GEOLOGIC SYSTEMS
pp.:
34 – 34
1.4.1 Composition
pp.:
35 – 36
1.4.2 Field Relations
pp.:
36 – 37
1.4.3 Fabric
pp.:
37 – 38
1.5 HOW PETROLOGISTS STUDY ROCKS
pp.:
38 – 38
CHAPTER 2 Composition and Classification of Magmatic Rocks
pp.:
38 – 40
2.1.2 Analyses
pp.:
40 – 41
2.1.1 Sampling
pp.:
40 – 40
2.1 ANALYTICAL PROCEDURES
pp.:
40 – 40
2.2 MINERAL COMPOSITION OF MAGMATIC ROCKS
pp.:
41 – 46
2.3 CHEMICAL COMPOSITION OF MAGMATIC ROCKS
pp.:
46 – 47
2.3.1 Variation Diagrams
pp.:
47 – 47
2.3.2 Continuous Spectrum of Rock Compositions
pp.:
47 – 48
2.4 CLASSIFICATION OF MAGMATIC ROCKS
pp.:
48 – 49
2.4.1 Classification Based on Fabric
pp.:
49 – 51
2.4.3 Classification Based on Mineralogical and Modal Composition
pp.:
51 – 52
2.4.2 Classification Based on Field Relations
pp.:
51 – 51
2.4.4 Classification Based on Whole-Rock Chemical Composition
pp.:
52 – 54
2.4.5 Rock Suites
pp.:
54 – 59
2.4.6 Classification of Basalt
pp.:
59 – 61
2.5.1 Partition Coefficients and Trace Element Compatibility
pp.:
61 – 62
2.5 TRACE ELEMENTS
pp.:
61 – 61
2.5.2 Rare Earth Elements
pp.:
62 – 64
2.5.3 Other Normalized Trace Element Diagrams
pp.:
64 – 66
2.6 ISOTOPES
pp.:
66 – 68
2.6.1 Stable Isotopes
pp.:
68 – 68
2.6.2 Radiogenic Isotopes
pp.:
68 – 69
2.6.3 Cosmogenic Isotopes: Beryllium
pp.:
69 – 71
CHAPTER 3 Thermodynamics and Kinetics: An Introduction
pp.:
71 – 75
3.2 ELEMENTARY CONCEPTS OF THERMODYNAMICS
pp.:
75 – 76
3.1 WHY IS THERMODYNAMICS IMPORTANT?
pp.:
75 – 75
3.2.2 First Law of Thermodynamics
pp.:
76 – 77
3.2.1 Thermodynamic States, Processes, and State Variables
pp.:
76 – 76
3.2.3 Enthalpy
pp.:
77 – 77
3.2.4 Entropy and the Second and Third Laws of Thermodynamics
pp.:
77 – 78
3.2.5 Gibbs Free Energy
pp.:
78 – 79
3.3 STABILITY (PHASE) DIAGRAMS
pp.:
79 – 80
3.3.1 Slope of the Melting Curve
pp.:
80 – 81
3.3.2 Determination of Phase Diagrams
pp.:
81 – 82
3.4 THERMODYNAMICS OF SOLUTIONS: SOME BASIC CONCEPTS
pp.:
82 – 83
3.4.2 Partial Molar Volume
pp.:
83 – 83
3.4.1 Components and Mole Fractions
pp.:
83 – 83
3.4.3 Partial Molar Gibbs Free Energy: The Chemical Potential
pp.:
83 – 84
3.4.4 P-T-X Phase Diagram
pp.:
84 – 85
3.5 APPLICATION OF THERMODYNAMICS TO SOLUTIONS
pp.:
85 – 85
3.5.1 Fugacity and Activity
pp.:
85 – 85
3.5.2 Equilibrium Constants
pp.:
85 – 86
3.5.3 Silica Activity, Silica Buffers, and Silica Saturation
pp.:
86 – 87
3.5.4 Oxygen Buffers
pp.:
87 – 88
3.5.5 Fe-Ti Oxide Buffers: Oxygen Geobarometers and Geothermometers
pp.:
88 – 90
3.6 KINETICS
pp.:
90 – 90
3.6.1 Activation Energy
pp.:
90 – 91
3.6.2 Overstepping and Metastable Persistence and Growth
pp.:
91 – 92
CHAPTER 4 Silicate Melts and Volatile Fluids in Magma Systems
pp.:
92 – 96
4.1.1 Atomic Structure of Melts
pp.:
96 – 97
4.1 NATURE OF MAGMA
pp.:
96 – 96
4.2 VOLATILE FLUIDS IN MELTS
pp.:
97 – 99
4.2.1 Nature of Volatiles
pp.:
99 – 99
4.2.2 Solubilities of Volatiles in Silicate Melts
pp.:
99 – 100
4.2.3 Exsolution of Volatiles from a Melt
pp.:
100 – 103
4.3 CONSEQUENCES OF FLUID EXSOLUTION FROM MELTS
pp.:
103 – 104
4.3.1 Explosive Volcanism
pp.:
104 – 104
4.3.2 Global Atmosphere and Climate
pp.:
104 – 106
4.3.3 Fumaroles, Hydrothermal Solutions, Ore Deposits, and Geothermal Reservoirs
pp.:
106 – 108
CHAPTER 5 Crystal-Melt Equilibria in Magmatic Systems
pp.:
108 – 111
5.2 MELTING OF A PURE MINERAL AND POLYMORPHISM
pp.:
111 – 113
5.1 PHASE DIAGRAMS
pp.:
111 – 111
5.1.1 Phase Rule
pp.:
111 – 111
5.2.2 Melting of a Pure Mineral in the Presence of Volatiles
pp.:
113 – 113
5.3 PHASE RELATIONS IN BINARY SYSTEMS
pp.:
113 – 114
5.2.1 Volatile-Free Equilibria
pp.:
113 – 113
5.3.1 Basic Concepts: CaMgSi2O6 (Di)-CaAl2Si2O8 (An) System at P 1 atm
pp.:
114 – 114
5.3.2 Mg2SiO4-SiO2 System at 1 atm
pp.:
114 – 117
5.4 CRYSTAL-MELT EQUILIBRIA IN REAL BASALT MAGMAS
pp.:
117 – 122
5.4.2 Basalt Magmas at High Pressures and High Water Concentrations
pp.:
122 – 123
5.4.1 Makaopuhi Basalt
pp.:
122 – 122
5.5 FELDSPAR-MELT EQUILIBRIA
pp.:
123 – 124
5.5.2 NaAlSi3O8 (Ab)-CaAl2Si2O8 (An) Binary Plagioclase System: Complete Solid Solution
pp.:
124 – 125
5.5.1 KAlSi3O8 (Kf)-CaAl2Si2O8 (An) Binary System: Limited Solid Solution
pp.:
124 – 124
5.5.3 NaAlSi3O8 (Ab)-KAlSi3O8 (Kf) Binary Alkali Feldspar System
pp.:
125 – 126
5.5.4 KAlSi3O8 (Kf)-NaAlSi3O8 (Ab)-CaAl2Si2O8 (An) Ternary Feldspar System
pp.:
126 – 128
5.5.5 KAlSi3O8 (Kf)-NaAlSi3O8 (Ab)-SiO2 (silica)-H2O: The Granite System
pp.:
128 – 132
5.6 CRYSTAL-MELT EQUILIBRIA INVOLVING ANHYDROUS MAFIC MINERALS: OLIVINE AND PYROXENE
pp.:
132 – 136
5.7 CRYSTAL-MELT EQUILIBRIA IN HYDROUS MAGMA SYSTEMS
pp.:
136 – 137
5.7.1 Equilibria in the Granodiorite-Water System
pp.:
137 – 137
5.7.2 Equilibria Involving Melt and Micas and Amphiboles
pp.:
137 – 138
5.8 GEOTHERMOMETERS AND GEOBAROMETERS
pp.:
138 – 141
5.8.1 Assessing States of Equilibrium in Rocks
pp.:
141 – 141
5.9 A BRIEF COMMENT REGARDING SUBSOLIDUS REACTIONS IN MAGMATIC ROCKS
pp.:
141 – 142
CHAPTER 6 Chemical Dynamics of Melts and Crystals
pp.:
142 – 146
6.2 CHEMICAL DIFFUSION
pp.:
146 – 150
6.1 VISCOSITY OF MELTS
pp.:
146 – 146
6.2.1 Types of Diffusion
pp.:
150 – 150
6.2.2 Theory and Measurement
pp.:
150 – 151
6.2.3 Factors Governing Diffusivities
pp.:
151 – 152
6.2.4 Average Diffusion Distance
pp.:
152 – 153
6.2.5 Soret Diffusion
pp.:
153 – 153
6.3 DIFFUSION OF HEAT
pp.:
153 – 154
6.3.1 The Role of Body Shape on Conductive Cooling
pp.:
154 – 155
6.4 INTERFACIAL ENERGY
pp.:
155 – 155
6.5 CRYSTALLIZATION
pp.:
155 – 157
6.5.3 Crystal Growth
pp.:
157 – 159
6.5.1 Why Is It Important to Study Nucleation and Crystallization?
pp.:
157 – 157
6.5.2 Nucleation
pp.:
157 – 157
6.5.4 Crystal Size in Magmatic Rocks
pp.:
159 – 161
6.6 SECONDARY OVERPRINTING PROCESSES MODIFYING PRIMARY CRYSTAL SIZE AND SHAPE
pp.:
161 – 163
6.6.2 Textural Equilibration: Grain Boundary Modification
pp.:
163 – 164
6.6.1 Crystal Dissolution
pp.:
163 – 163
6.7 VESICULATION AND FRAGMENTATION OF MAGMA
pp.:
164 – 166
6.7.1 Nucleation and Growth of Bubbles—Vesiculation
pp.:
166 – 166
6.7.2 Melt Fragmentation and Explosive Volcanism
pp.:
166 – 169
CHAPTER 7 Kinetic Paths and Fabric of Magmatic Rocks
pp.:
169 – 172
7.1 FABRICS RELATED TO CRYSTALLIZATION PATH: CRYSTALLINITY AND GRAIN SIZE
pp.:
172 – 175
7.1.1 Glassy Texture
pp.:
175 – 175
7.1.2 Aphanitic Texture
pp.:
175 – 177
7.1.3 Phaneritic Texture
pp.:
177 – 179
7.1.4 Porphyritic Texture
pp.:
179 – 181
7.1.5 Poikilitic and Ophitic Textures
pp.:
181 – 182
7.3 FABRICS RELATED TO CRYSTALLIZATION PATH: INHOMOGENEOUS GRAINS
pp.:
182 – 184
7.2 FABRICS RELATED TO CRYSTALLIZATION PATH: GRAIN SHAPE
pp.:
182 – 182
7.3.3 Subsolidus Decomposition and Exsolution in Unstable Minerals
pp.:
184 – 185
7.3.2 Reaction Rims
pp.:
184 – 184
7.3.1 Zoned Crystals
pp.:
184 – 184
7.4 FABRIC RELATED TO TEXTURAL EQUILIBRATION: SECONDARY GRAIN-BOUNDARY MODIFICATION
pp.:
185 – 186
7.5 A WORD OF CAUTION ON THE INTERPRETATION OF CRYSTALLINE TEXTURES
pp.:
186 – 187
7.5.1 Magmatic Rock Texture and Order of Crystallization
pp.:
187 – 187
7.6 FABRICS RELATED TO NONEXPLOSIVE EXSOLUTION OF VOLATILE FLUIDS
pp.:
187 – 189
7.7 VOLCANICLASTIC FABRICS RELATED TO FRAGMENTATION OF MAGMA
pp.:
189 – 190
7.7.1 Pyroclastic Processes
pp.:
190 – 191
7.7.2 Autoclastic Processes
pp.:
191 – 193
7.8 FABRICS RELATED TO CONSOLIDATION OF VOLCANICLASTS INTO SOLID ROCK
pp.:
193 – 195
7.9 ANISOTROPIC FABRICS
pp.:
195 – 195
7.9.1 Descriptive Geometric Aspects
pp.:
195 – 195
7.9.2 Origin
pp.:
195 – 199
7.10 INCLUSIONS
pp.:
199 – 205
CHAPTER 8 Physical and Thermal Dynamics of Bodies of Magma
pp.:
205 – 207
8.1.1 Concepts of Stress
pp.:
207 – 207
8.1 STRESS AND DEFORMATION
pp.:
207 – 207
8.1.2 Deformation
pp.:
207 – 208
8.1.3 Ideal Response to Stress
pp.:
208 – 209
8.2 RHEOLOGY OF ROCKS AND MAGMAS
pp.:
209 – 210
8.2.1 Rheology of Rocks
pp.:
210 – 211
8.2.2 Non-Newtonian Rheology of Magma
pp.:
211 – 214
8.2.3 Deformation and Flow of Magma
pp.:
214 – 215
8.3 DENSITY OF MAGMA AND BUOYANCY
pp.:
215 – 218
8.3.1 Density Determinations
pp.:
218 – 218
8.3.2 Densities of Minerals and Melts
pp.:
218 – 219
8.3.3 Buoyancy
pp.:
219 – 220
8.4 CONDUCTIVE HEAT TRANSFER
pp.:
220 – 221
8.4.1 Conductive Cooling Models
pp.:
221 – 222
8.5 ADVECTIVE HEAT TRANSFER
pp.:
222 – 223
8.6 MAGMA CONVECTION
pp.:
223 – 225
8.6.2 Thermochemical Convection in Crystallizing Magmas
pp.:
225 – 227
8.6.1 Thermal Convection in a Completely Molten Body of Melt
pp.:
225 – 225
8.6.3 Replenishment in Evolving Magma Chambers
pp.:
227 – 229
CHAPTER 9 Magma Ascent and Emplacement: Field Relations of Intrusions
pp.:
229 – 234
9.1.2 Magma Overpressure
pp.:
234 – 236
9.1.1 Neutral Buoyancy and the Crustal Density Filter
pp.:
234 – 234
9.1 MOVEMENT OF MAGMA IN THE EARTH
pp.:
234 – 234
9.1.3 Mechanisms of Magma Ascent
pp.:
236 – 237
9.2.2 Some Thermomechanical Concepts Pertaining to Emplacement of Sheet Intrusions
pp.:
237 – 240
9.2 SHEET INTRUSIONS (DIKES)
pp.:
237 – 237
9.2.1 Description and Terminology
pp.:
237 – 237
9.2.3 Geometry and Orientation of Sheet Intrusions
pp.:
240 – 242
9.2.4 Basalt Diking in Extensional Regimes
pp.:
242 – 244
9.3 DIAPIRS
pp.:
244 – 246
9.4 MAGMA EMPLACEMENT IN THE CRUST: PROVIDING THE SPACE
pp.:
246 – 248
9.4.1 Some Aspects of Granitic Plutons
pp.:
248 – 249
9.4.2 Emplacement Processes and Factors
pp.:
249 – 250
9.4.3 The Intrusion–Host Rock Interface
pp.:
250 – 260
CHAPTER 10 Magma Extrusion: Field Relations of Volcanic Rock Bodies
pp.:
260 – 265
10.1 OVERVIEW OF EXTRUSION: CONTROLS AND FACTORS
pp.:
265 – 265
10.1.1 Moving Magma to the Surface: What Allows Extrusion
pp.:
265 – 266
10.2 EFFUSIONS OF BASALTIC LAVA
pp.:
266 – 269
10.1.2 Two Types of Extrusions: Explosive and Effusive
pp.:
266 – 266
10.2.1 Types of Basaltic Lava Flows
pp.:
269 – 269
10.2.2 Columnar Joints
pp.:
269 – 273
10.2.3 Subaerial Lava Accumulations
pp.:
273 – 274
10.2.4 Submarine Basaltic Accumulations
pp.:
274 – 276
10.3 EFFUSIONS OF SILICIC LAVA
pp.:
276 – 278
10.3.2 Internal Fabric
pp.:
278 – 280
10.3.1 Morphological Characteristics and Growth
pp.:
278 – 278
10.4 EXPLOSIVE ERUPTIONS
pp.:
280 – 283
10.4.1 Explosive Mechanisms: Production of Pyroclasts
pp.:
283 – 283
10.4.2 Pyroclasts in Volcanic Plumes
pp.:
283 – 286
10.4.4 Explosive Style
pp.:
286 – 291
10.4.3 Pyroclast Transport and Deposition
pp.:
286 – 286
10.4.5 Pyroclastic Flows and Deposits: Overview
pp.:
291 – 294
10.4.6 Block-and-Ash Flows
pp.:
294 – 295
10.4.8 Calderas
pp.:
295 – 299
10.4.7 Ignimbrite-Forming Ash Flows
pp.:
295 – 295
10.4.9 Subaqueous Pyroclastic Flows
pp.:
299 – 301
10.5 OTHER VOLCANICLASTIC DEPOSITS
pp.:
301 – 302
10.5.2 Volcanic Debris Flows: Lahars
pp.:
302 – 302
10.5.1 Epiclastic Processes and Deposits
pp.:
302 – 302
10.5.3 Composite Volcanoes
pp.:
302 – 303
CHAPTER 11 Generation of Magma
pp.:
303 – 307
11.1.1 Temperature Increase, + T
pp.:
307 – 308
11.1 MELTING OF SOLID ROCK: CHANGES IN P, T, AND X
pp.:
307 – 307
11.1.2 Decompression, - P
pp.:
308 – 310
11.1.3 Changes in Water Concentration, + Xwater
pp.:
310 – 311
11.2 MANTLE SOURCE ROCK
pp.:
311 – 312
11.2.1 Mantle-Derived Inclusions
pp.:
312 – 313
11.2.2 Metasomatized and Enriched Mantle Rock
pp.:
313 – 315
11.3 GENERATION OF MAGMA IN MANTLE PERIDOTITE
pp.:
315 – 319
11.3.2 Fractional Partial Melting of Lherzolite
pp.:
319 – 321
11.3.1 Equilibrium (Batch) Partial Melting of Lherzolite
pp.:
319 – 319
11.3.4 Modeling Partial Melting Using Trace Elements
pp.:
321 – 323
11.3.3 Factors Controlling Partial Melt Composition
pp.:
321 – 321
11.3.5 Characteristics of Primary Magma
pp.:
323 – 324
11.4.1 Dehydration of Subducting Oceanic Crust
pp.:
324 – 325
11.4 MAGMA GENERATION IN SUBARC MANTLE WEDGE
pp.:
324 – 324
11.4.2 Magma Generation in the Mantle Wedge
pp.:
325 – 327
11.4.3 Partial Melting of Subducted Basaltic Oceanic Crust: Adakite
pp.:
327 – 329
11.5 GENERATION OF ALKALINE MAGMAS IN METASOMATICALLY ENRICHED MANTLE PERIDOTITE
pp.:
329 – 330
11.5.1 The Metasomatized Mantle Connection
pp.:
330 – 331
11.6 MAGMA GENERATION IN THE CONTINENTAL CRUST
pp.:
331 – 332
11.6.1 Partial Melting of Continental Source Rocks
pp.:
332 – 333
11.6.2 “Alphabet” Granitic Magmas: Contrasting Sources
pp.:
333 – 335
11.6.3 Crystalline Residues
pp.:
335 – 336
11.6.4 Melt Segregation
pp.:
336 – 337
CHAPTER 12 Differentiation of Magmas
pp.:
337 – 340
11.6.5 Felsic Magma Generation and the Mantle Connection
pp.:
337 – 337
12.1 USING VARIATION DIAGRAMS TO CHARACTERIZE DIFFERENTIATION PROCESSES
pp.:
340 – 341
12.2 CLOSED-SYSTEM MAGMATIC DIFFERENTIATION
pp.:
341 – 342
12.2.2 Physical Separation of Immiscible Melts
pp.:
342 – 346
12.2.1 Crystal-Melt Fractionation
pp.:
342 – 342
12.2.3 Fluid-Melt Separation: Pegmatites
pp.:
346 – 348
12.3 OPEN-SYSTEM DIFFERENTIATION: HYBRID MAGMAS
pp.:
348 – 349
12.3.1 Magma Mixing
pp.:
349 – 349
12.3.2 Assimilation
pp.:
349 – 352
12.4 DIFFERENTIATION IN BASALTIC INTRUSIONS
pp.:
352 – 353
12.4.2 Layered Intrusions
pp.:
353 – 355
12.4.1 Palisades Sill
pp.:
353 – 353
12.4.3 Oceanic-Ridge Magma Chambers
pp.:
355 – 361
12.5 ORIGIN OF THE CALC-ALKALINE DIFFERENTIATION TREND
pp.:
361 – 362
12.5.1 Tonga–Kermadec–New Zealand Arc
pp.:
362 – 363
CHAPTER 13 Magmatic Petrotectonic Associations
pp.:
363 – 372
12.5.2 Factors Controlling Development of the Calc-Alkaline Trend
pp.:
363 – 363
13.1 OCEANIC SPREADING RIDGES AND RELATED BASALTIC ROCKS
pp.:
372 – 373
13.1.1 Mid-Ocean Ridge Basalt (MORB)
pp.:
373 – 374
13.1.2 Iceland
pp.:
374 – 377
13.1.3 Mantle Reservoirs
pp.:
377 – 378
13.2.1 Character of Volcanic Rocks
pp.:
378 – 380
13.2 MANTLE PLUMES AND OCEANIC ISLAND VOLCANIC ROCKS
pp.:
378 – 378
13.2.2 Hawaiian Islands: Tholeiitic and Alkaline Associations
pp.:
380 – 383
13.2.3 Highly Alkaline Rocks on Other Oceanic Islands
pp.:
383 – 386
13.3 PLUME HEADS AND BASALT FLOOD PLATEAU LAVAS
pp.:
386 – 388
13.3.2 Continental Flood Basalt Plateaus
pp.:
388 – 389
13.3.1 Oceanic Plateaus
pp.:
388 – 388
13.3.3 Continental Breakup
pp.:
389 – 393
13.4 ARC MAGMATISM: OVERVIEW
pp.:
393 – 394
13.5 OCEANIC ISLAND ARCS
pp.:
394 – 395
13.5.1 Rock Associations
pp.:
395 – 396
13.5.2 Magma Evolution
pp.:
396 – 398
13.5.3 Back-Arc Basins
pp.:
398 – 399
13.6 OPHIOLITE
pp.:
399 – 400
13.6.2 Origin and Emplacement
pp.:
400 – 401
13.6.1 Characteristics
pp.:
400 – 400
13.7 CALC-ALKALINE CONTINENTAL MARGIN MAGMATIC ARCS
pp.:
401 – 401
13.7.1 Volcanic Arcs on Continental Margins
pp.:
401 – 402
13.7.2 Plutonic Arcs on Continental Margins: Granitic Batholiths
pp.:
402 – 406
13.8 GRANITES IN CONTINENT-CONTINENT COLLISION ZONES
pp.:
406 – 410
13.9 ANOROGENIC A-TYPE FELSIC ROCKS
pp.:
410 – 411
13.9.1 Characteristics
pp.:
411 – 412
13.9.2 Petrogenesis
pp.:
412 – 413
13.9.3 Anorogenic Ring Complexes in Nigeria and Niger
pp.:
413 – 414
13.10 GRANITES AND GRANITES
pp.:
414 – 414
13.11 CONTINENTAL RIFT ASSOCIATIONS: BIMODAL AND ALKALINE ROCKS
pp.:
414 – 416
13.11.1 Transitions from Continental Arc to Rift Associations in Western North America
pp.:
416 – 418
13.11.2 Magmatism in the East African Rift System
pp.:
418 – 419
13.12 ALKALINE ORPHANS, MOSTLY IN STABLE CRATONS
pp.:
419 – 421
13.12.1 Lamprophyres
pp.:
421 – 422
CHAPTER 14 Metamorphic Rocks and Metamorphism: An Overview
pp.:
422 – 428
13.12.2 Lamproite, Orangeite, and Kimberlite Clans
pp.:
422 – 422
14.1 EXAMPLES OF EQUILIBRATION IN METAMORPHIC ROCKS
pp.:
428 – 429
14.1.1 Incipient Metamorphism: Crystallization of New Minerals and Preservation of Relict Protolith Fabrics
pp.:
429 – 429
14.1.2 Recrystallization under Hydrostatic Conditions: Newly Imposed Granoblastic Fabric
pp.:
429 – 434
14.1.3 Recrystallization under Nonhydrostatic States of Stress: Tectonite Fabric
pp.:
434 – 438
14.1.4 Crystalloblastic Series
pp.:
438 – 445
14.1.5 Metasomatism
pp.:
445 – 446
14.2 THE NATURE OF METAMORPHISM
pp.:
446 – 448
14.2.2 Types of Metamorphism Based on Metamorphic Conditions
pp.:
448 – 450
14.2.1 The Nature of the Protolith
pp.:
448 – 448
14.2.3 Geologic Field Settings: Metamorphic Terranes
pp.:
450 – 450
14.2.4 Metamorphic Grade
pp.:
450 – 454
14.2.5 Metamorphic Zones
pp.:
454 – 455
14.2.6 Intensive Variables and Stable Mineral Assemblages
pp.:
455 – 460
14.2.7 Metamorphic Facies
pp.:
460 – 461
14.2.8 Metamorphic Facies Series
pp.:
461 – 462
14.3 WHY STUDY METAMORPHIC ROCKS? METAMORPHIC PETROLOGY AND CONTINENTAL EVOLUTION AND TECTONICS
pp.:
462 – 465
14.2.9 Metamorphic Field Gradients and P–T–t Paths
pp.:
462 – 462
CHAPTER 15 Petrography of Metamorphic Rocks: Fabric, Composition, and Classification
pp.:
465 – 471
15.1.1 Anisotropic Fabrics of Tectonites
pp.:
471 – 472
15.1 METAMORPHIC FABRICS
pp.:
471 – 471
15.1.2 Summary List of Metamorphic Textures
pp.:
472 – 476
15.2 CLASSIFICATION AND DESCRIPTION OF METAMORPHIC ROCKS
pp.:
476 – 479
15.2.1 Metamorphic Rock Names Based on Fabric
pp.:
479 – 479
15.2.2 Strongly Foliated Rocks
pp.:
479 – 480
15.2.3 Weakly Foliated Rocks
pp.:
480 – 481
15.2.4 Nonfoliated Mafic Rocks
pp.:
481 – 484
15.2.5 Nonfoliated High-Grade Felsic Rocks
pp.:
484 – 485
15.2.6 Other Nonfoliated Metamorphic Rocks
pp.:
485 – 486
15.2.7 Serpentinite
pp.:
486 – 487
15.2.8 Metasomatic Rock Types
pp.:
487 – 489
15.2.9 Misfits
pp.:
489 – 489
15.2.10 High-Strain-Rate Rocks in Fault and Shear Zones
pp.:
489 – 489
15.2.11 Veins
pp.:
489 – 490
15.3.1 Fundamentals
pp.:
490 – 490
15.3 GRAPHICAL REPRESENTATION OF MINERAL ASSEMBLAGES IN COMPOSITION DIAGRAMS
pp.:
490 – 490
15.3.2 Examples of Composition Diagrams in Hypothetical Three-Component Systems
pp.:
490 – 491
15.3.3 Compatibility Diagrams for Metamorphic Rocks
pp.:
491 – 493
CHAPTER 16 Metamorphic Mineral Reactions and Equilibria
pp.:
493 – 497
16.1 EQUILIBRIUM MINERAL ASSEMBLAGES
pp.:
497 – 498
16.2 OVERVIEW OF METAMORPHIC MINERAL REACTIONS
pp.:
498 – 499
16.3.1 The Al2SiO5 System
pp.:
499 – 500
16.3 POLYMORPHIC TRANSITIONS
pp.:
499 – 499
16.4 NET TRANSFER SOLID–SOLID REACTIONS
pp.:
500 – 503
16.4.1 Basic Relations in a System of Pure End-Member Phases
pp.:
503 – 503
16.4.2 Model Reactions in the Basalt–Granulite–Eclogite Transition
pp.:
503 – 505
16.5 CONTINUOUS REACTIONS BETWEEN CRYSTALLINE SOLID SOLUTIONS
pp.:
505 – 508
16.5.1 Solid Solution in the Continuous Net Transfer Reaction Plagioclase = Jadeitic Clinopyroxene + Quartz
pp.:
508 – 509
16.5.2 Continuous Exchange Reactions in Fe–Mg Solid Solutions
pp.:
509 – 509
16.6 SOLID–FLUID MINERAL REACTIONS
pp.:
509 – 512
16.6.2 Fundamental Concepts of Solid–Fluid Reactions
pp.:
512 – 515
16.6.1 Fluids in the Crust of the Earth
pp.:
512 – 512
16.6.3 Equilibria with Mixed-Volatile Fluids
pp.:
515 – 517
16.6.4 Local versus External Control of Fluid Composition during Devolatilization Reactions
pp.:
517 – 519
16.7 FLUID FLOW DURING METAMORPHISM OF THE CONTINENTAL CRUST
pp.:
519 – 522
16.7.1 Evidence for Fluid Flow
pp.:
522 – 522
16.7.2 Mechanics of Fluid Flow
pp.:
522 – 524
16.8 METASOMATISM
pp.:
524 – 528
16.8.2 The Thompson Model of Metasomatic Zoning and Local Equilibrium
pp.:
528 – 529
16.8.1 Ion Exchange Reactions in Open Metasomatic Systems
pp.:
528 – 528
16.8.3 Low-Variance Assemblages in Metasomatic Rocks
pp.:
529 – 530
16.9 REDOX MINERAL EQUILIBRIA
pp.:
530 – 532
16.8.4 Frames of Reference and the Isocon Diagram
pp.:
530 – 530
16.10 KINETICS AND MINERAL REACTIONS: WHAT ACTUALLY HAPPENS IN METAMORPHIC ROCKS
pp.:
532 – 533
16.11 PUTTING MINERAL EQUILIBRIA TO WORK: BROADER PETROLOGIC IMPLICATIONS
pp.:
533 – 535
16.10.1 Role of Fluids in the Mechanism of Metamorphic Reactions
pp.:
533 – 533
16.11.1 Isograds
pp.:
535 – 535
16.11.2 Evaluation of Intensive Variables during Metamorphism
pp.:
535 – 537
16.11.3 Mineral Thermobarometers
pp.:
537 – 538
CHAPTER 17 Evolution of Imposed Metamorphic Fabrics: Processes and Kinetics
pp.:
538 – 544
17.1 SOLID-STATE CRYSTALLIZATION UNDER STATIC CONDITIONS
pp.:
544 – 545
17.1.1 Nucleation and Growth
pp.:
545 – 546
17.1.2 Equilibration of Grain Size and Shape
pp.:
546 – 548
17.1.3 Intragrain Textural Features
pp.:
548 – 550
17.2 DUCTILE FLOW
pp.:
550 – 552
17.2.1 Diffusive Creep
pp.:
552 – 553
17.2.2 Intracrystalline Plastic Deformation
pp.:
553 – 556
17.2.3 Crystal Defects
pp.:
556 – 562
17.2.4 Recovery during Dislocation Creep
pp.:
562 – 565
17.2.6 Power Law in Ductile Flow
pp.:
565 – 567
17.2.5 Hydrolytic Weakening of Silicates during Plastic Slip
pp.:
565 – 565
17.3.1 Role of Fluids in Tectonite Fabric Development
pp.:
567 – 569
17.3 INTERACTIONS BETWEEN DEFORMATION, CRYSTALLIZATION, AND FLUIDS IN TECTONITES
pp.:
567 – 567
17.3.3 Pre-, Syn-, and Postkinematic Fabrics
pp.:
569 – 570
17.3.2 Timing of Deformation and Crystallization: Larger Scale Implications
pp.:
569 – 569
17.3.4 Polymetamorphism
pp.:
570 – 573
17.3.5 Shear-Sense Indicators
pp.:
573 – 575
17.3.6 Patterns of Deformation and Flow: Tectonic Significance of Fabric Geometry
pp.:
575 – 578
17.4 ORIGIN OF ANISOTROPIC FABRIC IN METAMORPHIC TECTONITES
pp.:
578 – 579
17.4.1 Preferred Dimensional Orientation of Mineral Grains
pp.:
579 – 580
17.4.3 Cleavage, Schistosity, and Compositional Layering
pp.:
580 – 582
17.4.2 Preferred Orientation of Crystal Lattices in Tectonites
pp.:
580 – 580
CHAPTER 18 Metamorphism at Convergent Plate Margins: P–T–t Paths, Facies, and Zones
pp.:
582 – 588
18.1 P–T–t PATHS
pp.:
588 – 589
18.1.2 Petrologic Determination of P–T–t Paths
pp.:
589 – 590
18.1.1 Thermal Considerations
pp.:
589 – 589
18.2 A BRIEF ANATOMICAL OVERVIEW OF METAMORPHISM IN OROGENS
pp.:
590 – 593
18.2.1 Specific Regional Metamorphic Terranes
pp.:
593 – 594
18.3 INTERMEDIATE- TO LOW-P METAMORPHIC ZONES AND FACIES
pp.:
594 – 600
18.3.2 P–T–t Paths and Chronology of Barrovian Metamorphism
pp.:
600 – 606
18.3.1 Pelitic Rocks in Typical Barrovian Zones at Intermediate Pressures
pp.:
600 – 600
18.3.3 Buchan Metamorphism
pp.:
606 – 607
18.3.4 Mineral Assemblages in Mafic Protoliths: A Brief Overview
pp.:
607 – 611
18.4 OCEAN-RIDGE METAMORPHISM
pp.:
611 – 613
18.3.5 Metabasites at Intermediate Pressures
pp.:
611 – 611
18.4.1 Petrology of Metamorphosed Seafloor Rocks
pp.:
613 – 614
18.5 INTACT SLABS OF OPHIOLITE
pp.:
614 – 616
18.6 NEAR-TRENCH METAMORPHIC ASSOCIATIONS
pp.:
616 – 618
18.6.3 Serpentinite
pp.:
618 – 620
18.6.1 The Franciscan Complex, California
pp.:
618 – 618
18.6.2 Mélange
pp.:
618 – 618
18.6.4 Subgreenschist Facies Rocks
pp.:
620 – 621
18.6.5 Metabasites at High Pressures
pp.:
621 – 623
18.6.6 P–T–t Paths and Tectonic Evolution of High P/ T Terranes
pp.:
623 – 624
18.7 ULTRAHIGH-P METAMORPHIC ROCKS
pp.:
624 – 625
18.7.1 Coesite and Diamond: Diagnostic UHP Minerals
pp.:
625 – 626
18.7.2 Dora Maira Massif in the Western Alps
pp.:
626 – 627
18.7.3 Dabie–Sulu Terranes
pp.:
627 – 629
18.7.4 Evolution of UHP Terranes
pp.:
629 – 630
CHAPTER 19 Precambrian Rock Associations
pp.:
630 – 634
19.1 THE YOUNG EARTH—A BRIEF OVERVIEW
pp.:
634 – 636
19.2 ARCHEAN GRANITOID–GREENSTONE TERRANES
pp.:
636 – 637
19.2.1 General Character of Greenstone Belts
pp.:
637 – 638
19.2.2 Itsaq Gneiss Complex, West Greenland: Earliest Record of Crustal Process at 3900–3600 Ma
pp.:
638 – 641
19.2.3 Kaapvaal Craton
pp.:
641 – 644
19.2.4 Yilgarn Craton
pp.:
644 – 645
19.2.5 Superior Province
pp.:
645 – 646
19.3 ARCHEAN VOLCANIC ROCKS
pp.:
646 – 647
19.3.1 Komatiite
pp.:
647 – 647
19.3.2 Basalts
pp.:
647 – 653
19.3.3 Archean Megacrystic Anorthosite
pp.:
653 – 654
19.3.4 Other Volcanic Rocks in Greenstone Belts
pp.:
654 – 656
19.4 ARCHEAN GRANITOIDS
pp.:
656 – 657
19.4.1 Tonalite–Trondhjemite–Granodiorite (TTG) Gneisses
pp.:
657 – 657
19.4.2 High-Mg Granitoids
pp.:
657 – 660
19.5.1 Grenville Province
pp.:
660 – 660
19.5 MID-PROTEROZOIC TECTONISM AND MAGMATISM
pp.:
660 – 660
19.4.3 Granite
pp.:
660 – 660
19.5.2 Massif-Type Anorthosite
pp.:
660 – 661
19.5.3 Rapakivi Granites
pp.:
661 – 668
19.6 GRANULITE-FACIES TERRANES IN ARCHEAN AND PROTEROZOIC CRATONS
pp.:
668 – 669
19.6.2 P–T Paths and Tectonic Evolution of Granulite-Facies Terranes
pp.:
669 – 670
19.6.1 Mineral Assemblages and Reactions
pp.:
669 – 669
19.7 PRECAMBRIAN BASALTIC INTRUSIONS
pp.:
670 – 672
19.8 MODELS FOR THE EVOLUTION OF THE PRECAMBRIAN CRUST
pp.:
672 – 673
19.8.1 Evolution of the Continental Crust
pp.:
673 – 675
APPENDIX A
pp.:
675 – 681
APPENDIX B
pp.:
681 – 685
REFERENCES CITED
pp.:
685 – 690
Colour Plates
pp.:
741 – 755