Description
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics.
The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic.
Editorial Board
Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil
Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia
Walter D. Neumann, Columbia University, New York, USA
Markus J. Pflaum, University of Colorado, Boulder, USA
Dierk Schleicher, Jacobs University, Bremen, Germany
Chapter
Chapter 2. Amicable Similarities
pp.:
50 – 53
Chapter 3. Clifford Algebras
pp.:
65 – 66
Chapter 4. C-Modules and the Decomposition Theorem
pp.:
85 – 87
Appendix. λ-Hermitian forms over C
pp.:
87 – 95
Chapter 5. Small (s, t)-Families
pp.:
103 – 104
Chapter 6. Involutions
pp.:
120 – 122
Chapter 7. Unsplittable (σ, τ)-Modules
pp.:
132 – 133
Chapter 8. The Space of All Compositions
pp.:
148 – 149
Chapter 9. The Pfister Factor Conjecture
pp.:
171 – 174
Appendix. Pfister forms and function fields
pp.:
174 – 181
Chapter 10. Central Simple Algebras and an Expansion Theorem
pp.:
189 – 190
Chapter 11. Hasse Principles
pp.:
216 – 218
Appendix. Hasse principle for divisibility of forms
pp.:
218 – 232
Part II. Compositions of Size [r, s, n]
pp.:
237 – 239
Introduction
pp.:
239 – 241
Chapter 12. [r, s, n]-Formulas and Topology
pp.:
241 – 245
Appendix. More applications of topology to algebra
pp.:
245 – 266
Chapter 13. Integer Composition Formulas
pp.:
278 – 282
Appendix A. A new proof of Yuzvinsky’s theorem
pp.:
282 – 300
Appendix B. Monomial compositions
pp.:
300 – 302
Appendix C. Known upper bounds for r * s
pp.:
302 – 305
Chapter 14. Compositions over General Fields
pp.:
311 – 313
Appendix. Compositions of quadratic forms α, β, γ
pp.:
313 – 331
Chapter 15. Hopf Constructions and Hidden Formulas
pp.:
341 – 343
Appendix. Polynomial maps between spheres
pp.:
343 – 362
Chapter 16. Related Topics
pp.:
375 – 377
B. Vector products and composition algebras
pp.:
377 – 382
A. Higher degree forms permitting composition
pp.:
377 – 377
C. Compositions over rings and over fields of characteristic 2
pp.:
382 – 384
D. Linear spaces of matrices of constant rank
pp.:
384 – 386
References
pp.:
394 – 395
List of Symbols
pp.:
395 – 421