Ill-Posed Problems with A Priori Information ( Inverse and Ill-Posed Problems Series )

Publication series :Inverse and Ill-Posed Problems Series

Author: V. V. Vasin   A. L. Ageev  

Publisher: De Gruyter‎

Publication year: 1995

E-ISBN: 9783110900118

P-ISBN(Paperback): 9789067641913

Subject: O241 数值分析

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Chapter

Introduction

pp.:  1 – 11

CHAPTER 1. UNSTABLE PROBLEMS

pp.:  11 – 15

2.1. The problem of gravimetry

pp.:  18 – 18

3.1. Tikhonov’s method

pp.:  24 – 25

3.4. α-processes

pp.:  26 – 27

3.3. Linear iterative processes

pp.:  26 – 26

3.7. The iterative regularization method

pp.:  28 – 29

3.8. Combined methods

pp.:  29 – 30

3.9. Method of the regularization and penalties

pp.:  30 – 30

3.10. Methods of the mathematical programming

pp.:  30 – 31

CHAPTER 2. ITERATIVE METHODS FOR APPROXIMATION OF FIXED POINTS AND THEIR APPLICATION TO ILL-POSED PROBLEMS

pp.:  31 – 33

§ 1 Basic classes of mappings

pp.:  33 – 33

1.1. Quasi-nonexpansive and pseudo-contractive mappings

pp.:  33 – 34

1.2. Existence of fixed points

pp.:  34 – 35

§ 2 Convergence theorems for iterative processes

pp.:  35 – 39

2.2. Weak convergence of iterations for pseudo-contractions

pp.:  39 – 41

2.1. Strong convergence of iterations for quasi-contractions

pp.:  39 – 39

§ 3 Iterations with correcting multipliers

pp.:  41 – 42

3.1. Stability of fixed points from parameter

pp.:  42 – 43

3.2. Strong iterative approximation of fixed points

pp.:  43 – 44

3.3. Generalization of results to quasi-nonexpansive operators

pp.:  44 – 45

§ 4 Applications to problems of mathematical programming

pp.:  45 – 47

4.1. Setting of a problem and definition of well-posedness

pp.:  47 – 48

4.2. Prox-algorithm for minimization of convex functional

pp.:  48 – 50

4.3. Fejer processes for convex inequalities system

pp.:  50 – 52

4.4. Iterative processes for solution of operator equations with a priori information

pp.:  52 – 56

4.5. The gradient projection method for convex functional

pp.:  56 – 57

4.6. Minimization of quadratic functional

pp.:  57 – 58

§ 5 Regularizing properties of iterations

pp.:  58 – 64

5.2. Disturbance analysis for the Fejer processes

pp.:  64 – 66

5.1. Iterations with perturbed data and construction of regularizing algorithm

pp.:  64 – 64

5.3. Analysis of solution stability in the projection gradient method

pp.:  66 – 68

§ 6 Iterative processes with averaging

pp.:  68 – 70

6.1. Formulation of the method and preliminary results

pp.:  70 – 70

6.2. The convergence theorem

pp.:  70 – 72

6.3. Stability with respect to perturbations. Weak regularization

pp.:  72 – 73

6.4. The Mann iterative processes

pp.:  73 – 74

§ 7 Iterative regularization of variational inequalities and of operator equations with monotone operators

pp.:  74 – 76

7.2. The method of successive approximation in well-posed case

pp.:  76 – 77

7.1. Formulation of problem

pp.:  76 – 76

7.3. Convergence of the iteratively regularized method of successive approximations

pp.:  77 – 78

7.4. Strong convergence of the Mann processes

pp.:  78 – 83

§8 Iterative regularization of operator equations in the partially ordered spaces

pp.:  83 – 85

8.2. The convergence of iterations for monotonically decomposable operators

pp.:  85 – 86

8.1. Preliminary information

pp.:  85 – 85

8.3. Explicit iterative processes for operator equations of the first kind

pp.:  86 – 88

8.4. Monotone processes of Newton’s type

pp.:  88 – 91

§ 9 Iterative schemes based on the Gauss-Newton method

pp.:  91 – 93

9.1. The two-step method

pp.:  93 – 93

9.2. Iteratively regularized schemes of the Gauss-Newton method

pp.:  93 – 95

CHAPTER 3. REGULARIZATION METHODS FOR SYMMETRIC SPECTRAL PROBLEMS

pp.:  95 – 101

1.1. Definition of L-basis and its properties

pp.:  101 – 101

1.2. Measure of nearness between orthonormal bases

pp.:  101 – 104

§ 1 L-basis of linear operator kernel

pp.:  101 – 101

§ 2 Analogies of Tikhonov’s and Lavrent ’ev’s methods

pp.:  104 – 105

2.2. Regularizing properties of Tikhonov’s method

pp.:  105 – 107

2.1. Tikhonov’s method

pp.:  105 – 105

2.3. The Lavrent’ev method

pp.:  107 – 110

§ 3 The variational residual method and the quasisolutions method

pp.:  110 – 111

3.1. The residual method for linear operator kernel determination

pp.:  111 – 111

3.2. Residual principle proof for determination of regularization parameter

pp.:  111 – 113

3.3. Ivanov’s quasisolutions method

pp.:  113 – 116

3.4. Quasisolutions principle proof for choice of regularization parameter

pp.:  116 – 118

§ 4 Regularization of generalized spectral problem

pp.:  118 – 119

4.2. Regularization method

pp.:  119 – 123

4.1. Gershgorin’s domains for generalized spectral problem

pp.:  119 – 119

CHAPTER 4. THE FINITE MOMENT PROBLEM AND SYSTEMS OF OPERATORS EQUATIONS

pp.:  123 – 128

1.2. The convergence theorem of approximations

pp.:  128 – 129

1.1. Statement of the infinite moment problem

pp.:  128 – 128

§ 1 Statement of the problem and convergence offinite-dimensional approximations

pp.:  128 – 128

§ 2 Iterative methods on the basis of projections

pp.:  129 – 133

2.1. Convergence of iterations for exact data

pp.:  133 – 134

2.2. Convergence of iterations in the presence of noise

pp.:  134 – 135

§ 3 The Fejerprocesses with correcting multipliers

pp.:  135 – 137

3.2. Finite dimensional approximation of normal solution

pp.:  137 – 138

3.1. The finite moment problem in the form of inequalities

pp.:  137 – 137

3.3. Application to integral equations of the first kind

pp.:  138 – 142

§ 4 FMP regularization in Hilbert spaces with reproducing kernels

pp.:  142 – 142

4.2. Representation of normal solution in the space W°12[-1,1]

pp.:  142 – 144

4.1. Definition of reproducing kernels and their properties

pp.:  142 – 142

4.3. Construction of the orthogonal polynomial system

pp.:  144 – 146

4.4. Computation of the resolving system matrix

pp.:  146 – 147

4.5. Regularized solution

pp.:  147 – 148

4.6. Analysis of solution’s sensitivity

pp.:  148 – 149

4.7. Application to inversion of the Laplace transform

pp.:  149 – 151

§ 5 Iterative approximation of solution of linear operator equation system

pp.:  151 – 153

5.2. Auxiliary results

pp.:  153 – 154

5.1. Problem formulation and construction of the method

pp.:  153 – 153

5.3. Convergence theorems for exact and perturbed data

pp.:  154 – 157

CHAPTER 5. DISCRETE APPROXIMATION OF REGULARIZING ALGORITHMS

pp.:  157 – 161

§ 1 Discrete convergence of elements and operators

pp.:  161 – 161

1.2. Interpolation operators

pp.:  161 – 165

1.1. Strong and weak convergence of elements

pp.:  161 – 161

1.3. Convergence theorems for operators

pp.:  165 – 166

1.4. Discrete convergence in uniform convex spaces

pp.:  166 – 168

§2 Convergence of discrete approximations for Tikhonov’s regularizing algorithm

pp.:  168 – 172

2.1. Convergence of regularized solutions

pp.:  172 – 172

2.2. Finite-dimensional approximation. Sufficient conditions of convergence

pp.:  172 – 173

§ 3 Applications to integral and operator equations

pp.:  173 – 177

3.1. Mechanical quadrature method

pp.:  177 – 178

3.2. Collocation method

pp.:  178 – 180

3.3. Projection methods

pp.:  180 – 182

3.4. Nonlinear integral equations

pp.:  182 – 183

3.5. Discretization of Volterra equations. Self-regularization

pp.:  183 – 185

§ 4 Interpolation of discrete approximate solutions by splines

pp.:  185 – 187

4.1. Piecewise constant and piecewise linear interpolation

pp.:  187 – 187

4.2. Parabolic and cubic splines

pp.:  187 – 192

4.3. Approximation of a priori set

pp.:  192 – 195

§ 5 Discrete approximation of reconstruction of linear operator kernel basis

pp.:  195 – 197

5.2. Finite-dimensional approximation of Tikhonov’s method

pp.:  197 – 198

5.1. Discrete measures of nearness

pp.:  197 – 197

5.3. Finite-dimensional approximation of the residual method

pp.:  198 – 199

5.4. Discrete approximation of Ivanov’s quasisolutions method

pp.:  199 – 200

§ 6 Finite-dimensional approximation of regularized algorithms on discontinuous functions classes

pp.:  200 – 202

6.1. Finite-dimensional approximation of function of unbounded operator

pp.:  202 – 202

6.2. Discrete approximation of Tikhonov's method with special stabilizer

pp.:  202 – 205

6.3. Regularizing algorithms on classes of discontinuous functions

pp.:  205 – 206

CHAPTER 6. NUMERICAL APPLICATIONS

pp.:  206 – 211

1.1. Regularization and discretization of base equation

pp.:  211 – 211

1.2. Reconstruction of model solution

pp.:  211 – 213

§ 1 Iterative algorithms for solving gravimetry problem

pp.:  211 – 211

§2 Computing schemes for finite moment problem

pp.:  213 – 218

2.2. Quadrature approximation and iterations with correcting multipliers

pp.:  218 – 220

2.1. Decomposition by means of Legendre polynomials and iterations with projections

pp.:  218 – 218

2.3. Numerical solution of the finite moment problem in the space with a reproducing kernel

pp.:  220 – 221

§ 3 Methods for experiment data processing in structure investigations of amorphous alloys

pp.:  221 – 224

3.1. Solution of EXAFS-equation by Tikhonov variational method

pp.:  224 – 224

3.2. Approximation algorithms for the kernel of an integral operator

pp.:  224 – 226

3.3. A priori information accounting for EXAFS

pp.:  226 – 228

3.4. Uniqueness for the diffraction equation

pp.:  228 – 229

3.5. Iterative algorithm for solving the diffraction equation

pp.:  229 – 231

APPENDIX. CORRECTION PARAMETERS METHODS FOR SOLVING INTEGRAL EQUATIONS OF THE FIRST KIND

pp.:  231 – 236

3.6. Algorithm for solving an integral equations system

pp.:  231 – 231

2. Algorithms of the parameter correction

pp.:  236 – 239

1. The error model and problem statement

pp.:  236 – 236

3. The discussion. The results of numerical experiments

pp.:  239 – 242

Bibliography

pp.:  242 – 247

LastPages

pp.:  247 – 269

The users who browse this book also browse