Integral Geometry of Tensor Fields ( Inverse and Ill-Posed Problems Series )

Publication series :Inverse and Ill-Posed Problems Series

Author: V. A. Sharafutdinov  

Publisher: De Gruyter‎

Publication year: 1994

E-ISBN: 9783110900095

P-ISBN(Paperback): 9789067641654

Subject: O186 Differential Geometry and Integral Geometry

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Chapter

1 Introduction

pp.:  1 – 13

1.3 Some remarks

pp.:  16 – 19

8.3 Proof of Theorem 8.1.1

pp.:  24 – 238

2.4 Proof of Theorem 2.2.2

pp.:  28 – 31

2.5 The ray transform of a field-distribution

pp.:  31 – 37

2.6 Decomposition of a tensor field into potential and solenoidal parts

pp.:  37 – 40

2.7 A theorem on the tangent component

pp.:  40 – 43

2.8 A theorem on conjugate tensor fields on the sphere

pp.:  43 – 48

2.9 Primality of the ideal (|x|2, (〈x,y〉)

pp.:  48 – 52

2.11 Integral moments of the function If

pp.:  52 – 56

2.10 Description of the image of the ray transform

pp.:  52 – 52

2.12 Inversion formulas for the ray transform

pp.:  56 – 58

2.13 Proof of Theorem 2.12.1

pp.:  58 – 61

2.14 Inversion of the ray transform on the space of field-distributions

pp.:  61 – 66

2.15 The Plancherel formula for the ray transform

pp.:  66 – 69

2.16 Application of the ray transform to an inverse problem of photoelasticity

pp.:  69 – 72

2.17 Further results

pp.:  72 – 79

3 Some questions of tensor analysis

pp.:  79 – 83

3.1 Tensor fields

pp.:  83 – 83

3.2 Covariant differentiation

pp.:  83 – 86

3.3 Symmetric tensor fields

pp.:  86 – 90

3.4 Semibasic tensor fields

pp.:  90 – 95

3.5 The horizontal covariant derivative

pp.:  95 – 99

3.6 Formulas of Gauss-Ostrogradskiĭ type for vertical and horizontal derivatives

pp.:  99 – 104

4 The ray transform on a Riemannian manifold

pp.:  104 – 115

4.1 Compact dissipative Riemannian manifolds

pp.:  115 – 116

4.2 The ray transform on a CDRM

pp.:  116 – 119

4.3 The problem of inverting the ray transform

pp.:  119 – 121

4.4 Pestov's differential identity

pp.:  121 – 124

4.5 Poincaré's inequality for semibasic tensor fields

pp.:  124 – 126

4.6 Reduction of Theorem 4.3.3 to an inverse problem for the kinetic equation

pp.:  126 – 130

4.7 Proof of Theorem 4.3.3

pp.:  130 – 134

4.8 Consequences for the nonlinear problem of determining a metric from its hodograph

pp.:  134 – 136

4.9 Bibliographical remarks

pp.:  136 – 140

5 The transverse ray transform

pp.:  140 – 143

5.1 Electromagnetic waves in quasi-isotropic media

pp.:  143 – 144

5.2 The transverse ray transform on a CDRM

pp.:  144 – 157

5.3 Reduction of Theorem 5.2.2 to an inverse problem for the kinetic equation

pp.:  157 – 159

5.4 Estimation of the summand related to the right-hand side of the kinetic equation

pp.:  159 – 161

5.5 Estimation of the boundary integral and summands depending on curvature

pp.:  161 – 166

5.6 Proof of Theorem 5.2.2

pp.:  166 – 168

5.7 Decomposition of the operators A0 and A1

pp.:  168 – 170

5.8 Proof of Lemma 5.6.1

pp.:  170 – 174

5.9 Final remarks

pp.:  174 – 176

6 The truncated transverse ray transform

pp.:  176 – 179

6.2 The truncated transverse ray transform

pp.:  179 – 184

6.1 The polarization ellipse

pp.:  179 – 179

6.3 Proof of Theorem 6.2.2

pp.:  184 – 185

6.4 Decomposition of the operator Qξ

pp.:  185 – 191

6.5 Proof of Lemma 6.3.1

pp.:  191 – 197

6.6 Inversion of the truncated transverse ray transform on Euclidean space

pp.:  197 – 203

7 The mixed ray transform

pp.:  203 – 207

7.1 Elastic waves in quasi-isotropic media

pp.:  207 – 207

7.2 The mixed ray transform

pp.:  207 – 217

7.3 Proof of Theorem 7.2.2

pp.:  217 – 220

7.4 The algebraic part of the proof

pp.:  220 – 222

8 The exponential ray transform

pp.:  222 – 229

8.1 Formulation of the main definitions and results

pp.:  229 – 230

8.2 The modified horizontal derivative

pp.:  230 – 24

8.4 The volume of a simple compact Riemannian manifold

pp.:  238 – 244

8.5 Determining a metric in a prescribed conformal class

pp.:  244 – 248

8.6 Bibliographical remarks

pp.:  248 – 258

Bibliography

pp.:  258 – 261

Index

pp.:  261 – 271

LastPages

pp.:  271 – 277

The users who browse this book also browse


No browse record.