The Riemann Zeta-Function ( De Gruyter Expositions in Mathematics )

Publication series :De Gruyter Expositions in Mathematics

Author: Anatoly A. Karatsuba   S. M. Voronin   Neal Koblitz  

Publisher: De Gruyter‎

Publication year: 1992

E-ISBN: 9783110886146

P-ISBN(Paperback): 9783110131703

Subject: O156.4 Analytic number theory

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics.

The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic.

Editorial Board

Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil
Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia
Walter D. Neumann, Columbia University, New York, USA
Markus J. Pflaum, University of Colorado, Boulder, USA
Dierk Schleicher, Jacobs University, Bremen, Germany

Chapter

Preface

pp.:  1 – 5

Notation

pp.:  5 – 6

Introduction

pp.:  6 – 7

§2. Generalizations of ζ (s)

pp.:  13 – 15

§1. Definition of ζ (s)

pp.:  13 – 13

Remarks on Chapter I

pp.:  40 – 53

Chapter II. The Riemann zeta-function as a generating function in number theory

pp.:  53 – 55

§1. The Dirichlet series associated with the Riemann ζ-function

pp.:  55 – 55

§2. The connection between the Riemann zeta-function and the Möbius function

pp.:  55 – 57

§3. The connection between the Riemann zeta-function and the distribution of prime numbers

pp.:  57 – 61

§4. Explicit formulas

pp.:  61 – 63

§5. Prime number theorems

pp.:  63 – 68

§6. The Riemann zeta-function and small sieve identities

pp.:  68 – 72

Remarks on Chapter II

pp.:  72 – 75

Chapter III. Approximate functional equations

pp.:  75 – 76

§2. A simple approximate functional equation for ζ (s, α)

pp.:  76 – 90

§1. Replacing a trigonometric sum by a shorter sum

pp.:  76 – 76

§3. Approximate functional equation for ζ(s)

pp.:  90 – 93

§4. Approximate functional equation for the Hardy function Z(t) and its derivatives

pp.:  93 – 97

§5. Approximate functional equation for the Hardy-Selberg function F(t)

pp.:  97 – 107

Remarks on Chapter III

pp.:  107 – 112

Chapter IV. Vinogradov’s method in the theory of the Riemann zeta-function

pp.:  112 – 113

§2. A bound for zeta sums, and some corollaries

pp.:  113 – 124

§1. Vinogradov’s mean value theorem

pp.:  113 – 113

§3. Zero-free region for ζ (s)

pp.:  124 – 131

§4. The multidimensional Dirichlet divisor problem

pp.:  131 – 132

Remarks on Chapter IV

pp.:  132 – 135

Chapter V. Density theorems

pp.:  135 – 138

§1. Preliminary estimates

pp.:  138 – 138

§2. A simple bound for Ν(σ, Τ)

pp.:  138 – 140

§3. A modern estimate for Ν(σ, Τ)

pp.:  140 – 143

§4. Density theorems and primes in short intervals

pp.:  143 – 160

§5. Zeros of ζ (s) in a neighborhood of the critical line

pp.:  160 – 162

§6. Connection between the distribution of zeros of ζ(s) and bounds on |ζ(s)|. The Lindelöf conjecture and the density conjecture

pp.:  162 – 173

Remarks on Chapter V

pp.:  173 – 178

Chapter VI. Zeros of the zeta-function on the critical line

pp.:  178 – 180

§2. Distance between consecutive zeros of Z(k)(t), k ≥ 1

pp.:  180 – 188

§1. Distance between consecutive zeros on the critical line

pp.:  180 – 180

§3. Selberg’s conjecture on zeros in short intervals of the critical line

pp.:  188 – 191

§4. Distribution of the zeros of on the critical line

pp.:  191 – 212

§5. Zeros of a function similar to ζ(s) which does not satisfy the Riemann Hypothesis

pp.:  212 – 224

Remarks on Chapter VI

pp.:  224 – 251

Chapter VII. Distribution of nonzero values of the Riemann zeta-function

pp.:  251 – 253

§1. Universality theorem for the Riemann zeta-function

pp.:  253 – 253

§2. Differential independence of

pp.:  253 – 264

§3. Distribution of nonzero values of Dirichlet L-functions

pp.:  264 – 267

§4. Zeros of the zeta-functions of quadratic forms

pp.:  267 – 284

Remarks on Chapter VII

pp.:  284 – 296

Chapter VIII. Ω-theorems

pp.:  296 – 298

§2. Ω-theorems for ζ(s) in the critical strip

pp.:  298 – 302

§1. Behavior of |ζ(σ + it)|, σ > I

pp.:  298 – 298

§3. Multidimensional Ω-theorems

pp.:  302 – 317

Remarks on Chapter VIII

pp.:  317 – 336

Appendix

pp.:  336 – 338

§2. Some facts from analytic function theory

pp.:  338 – 339

§1. Abel summation (partial summation)

pp.:  338 – 338

§3. Euler’s gamma-function

pp.:  339 – 350

§4. General properties of Dirichlet series

pp.:  350 – 356

§5. Inversion formula

pp.:  356 – 359

§6. Theorem on conditionally convergent series in a Hilbert space

pp.:  359 – 364

§7. Some inequalities

pp.:  364 – 370

§8. The Kronecker and Dirichlet approximation theorems

pp.:  370 – 371

§9. Facts from elementary number theory

pp.:  371 – 376

§10. Some number theoretic inequalities

pp.:  376 – 384

§11. Bounds for trigonometric sums (following van der Corput)

pp.:  384 – 387

§12. Some algebra facts

pp.:  387 – 392

§13. Gabriel’s inequality

pp.:  392 – 393

Bibliography

pp.:  393 – 397

Index

pp.:  397 – 407

LastPages

pp.:  407 – 409

The users who browse this book also browse