Chapter
§ 3 Measurability
pp.:
30 – 33
3.1 Measurable Multis
pp.:
33 – 33
3.2 Measurable Selections
pp.:
33 – 34
3.3 Approximation by Step-Multis
pp.:
34 – 35
3.4 Some Consequences
pp.:
35 – 37
3.5 Multis of Two Variables
pp.:
37 – 38
§ 4 Mishmash
pp.:
40 – 43
4.1 Tangency Conditions
pp.:
43 – 43
4.2 Bochner Integrals
pp.:
43 – 46
4.3 Monotone Multis
pp.:
46 – 47
4.4 Accretive Multis
pp.:
47 – 50
4.5 Some Basic Facts about Banach Spaces
pp.:
50 – 54
Chapter 2: Existence Theory in Finite Dimensions
pp.:
56 – 61
§ 5 Upper Semicontinuous Right-Hand Sides
pp.:
61 – 64
5.1 The Usc Case
pp.:
64 – 65
5.2 Counter-Examples
pp.:
65 – 66
5.3 The Carathéodory Case
pp.:
66 – 68
5.4 Some Consequences
pp.:
68 – 70
§ 6 Lower Semicontinuous Right-Hand Sides
pp.:
73 – 77
6.1 The Lsc Case
pp.:
77 – 78
6.2 The Carathéodory Case
pp.:
78 – 80
6.3 Some Consequences
pp.:
80 – 83
Chapter 3: Solution Sets
pp.:
87 – 89
§ 7 Topological Properties of Solution Sets
pp.:
89 – 91
7.2 Invariance
pp.:
91 – 92
7.1 Elementary Properties
pp.:
91 – 91
7.3 Connectedness in the Usc Case
pp.:
92 – 93
7.4 Connectedness in the Lsc Case
pp.:
93 – 96
§ 8 Comparison of Solutions
pp.:
99 – 103
8.2 Extremal Solutions I
pp.:
103 – 104
8.1 Preliminaries
pp.:
103 – 103
8.3 Extremal Solutions II
pp.:
104 – 107
8.4 Related Problems
pp.:
107 – 110
8.5 Gronwall’s Lemma
pp.:
110 – 112
8.6 Convexification
pp.:
112 – 114
8.7 Remarks
pp.:
114 – 117
Chapter 4: Existence Theory in Infinite Dimensions
pp.:
117 – 121
§ 9 Compactness Conditions
pp.:
121 – 123
9.2 Measures of Noncompactness
pp.:
123 – 125
9.1 Two Examples
pp.:
123 – 123
9.3 The Usc Case
pp.:
125 – 127
9.4 The Lsc Case
pp.:
127 – 131
9.5 Remarks
pp.:
131 – 136
§10 Noncompactness Conditions
pp.:
137 – 142
10.2 Extreme Points
pp.:
142 – 143
10.1 Baire Category
pp.:
142 – 142
10.3 Proof of Theorem 10.1
pp.:
143 – 145
10.4 Lipschitz Conditions
pp.:
145 – 147
10.5 Monotonicity
pp.:
147 – 148
10.6 Hyperaccretivity
pp.:
148 – 152
10.7 Remarks
pp.:
152 – 153
Chapter 5: Fixed Points and Qualitative Theory
pp.:
154 – 155
§ 11 Fixed Points
pp.:
155 – 158
11.2 Weakly Inward Maps
pp.:
158 – 161
11.1 Some (Geo-)metric Results
pp.:
158 – 158
11.3 Set-Contractions
pp.:
161 – 163
11.4 Degree Theory
pp.:
163 – 166
11.5 An Example
pp.:
166 – 168
11.6 Remarks
pp.:
168 – 170
§ 12 Boundary Value Problems
pp.:
172 – 176
12.2 Sturm/Liouville Problems
pp.:
176 – 179
12.1 A Comparison Result
pp.:
176 – 176
12.3 Solutions in Closed Sets
pp.:
179 – 185
12.4 Remarks
pp.:
185 – 189
§ 13 Periodic Solutions
pp.:
190 – 193
13.1 Reduction to the Regular Case
pp.:
193 – 193
13.2 Another Fixed Point Problem
pp.:
193 – 194
13.3 Examples
pp.:
194 – 198
13.4 Remarks
pp.:
198 – 209
§ 14 Stability and Asymptotic Behavior
pp.:
209 – 214
14.1 Stability
pp.:
214 – 214
14.2 Stability Tests
pp.:
214 – 216
14.3 Asymptotic Behavior
pp.:
216 – 220
14.4 Perturbations
pp.:
220 – 225
14.5 Remarks
pp.:
225 – 229
Appendix: Related Topics
pp.:
234 – 239
A 1. Discontinuous Differential Equations
pp.:
239 – 239
A 2. Implicit Differential Equations
pp.:
239 – 245
A 3. Functional Differential Equations
pp.:
245 – 247
A 4. Perturbations of Dissipative Right-Hand Sides
pp.:
247 – 249
References
pp.:
249 – 255