Numerical "Particle-in-Cell" Methods :Theory and Applications

Publication subTitle :Theory and Applications

Author: Yu. N. Grigoryev   V. A. Vshivkov   M. P. Fedoruk  

Publisher: De Gruyter‎

Publication year: 2002

E-ISBN: 9783110916706

P-ISBN(Paperback): 9789067643689

Subject: O175.22 partial differential equation of first order

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Chapter

Some applications

pp.:  13 – 17

General characteristics

pp.:  13 – 13

1. Particle-in-cell methods

pp.:  17 – 23

1.1. Introduction

pp.:  23 – 23

1.2. General scheme

pp.:  23 – 24

1.4. Errors of the particle-in-cell schemes

pp.:  30 – 43

1.5. The continuity equation in the particle method

pp.:  43 – 56

2. Particle-in-cell methods on unstructured meshes

pp.:  56 – 64

2.1. Introduction

pp.:  64 – 64

2.2. Finite-elements bases

pp.:  64 – 66

2.3. The Lagrangian step on unstructured meshes

pp.:  66 – 70

2.4. The Euler step. The finite-volume method

pp.:  70 – 86

3. The particle methods in gas dynamics

pp.:  86 – 93

3.2. Basic equations

pp.:  93 – 94

3.1. Introduction

pp.:  93 – 93

3.3. The realization of the method

pp.:  94 – 96

3.4. The combined particle method

pp.:  96 – 105

3.5. The example of application

pp.:  105 – 107

4. Vortex-in-cell methods

pp.:  107 – 110

4.2. Vorticity dynamics in two-dimensional flows

pp.:  110 – 111

4.1. Introduction

pp.:  110 – 110

4.3. The vortex-in-cell method in two-dimensional case

pp.:  111 – 112

4.4. The dynamics of vortices in three-dimensional flows

pp.:  112 – 119

4.5. The vortex-in-cell scheme for three-dimensional flows

pp.:  119 – 122

4.6. The examples of applications

pp.:  122 – 127

5. Particle-in-cell methods in collisionless plasma dynamics

pp.:  127 – 132

5.1. Introduction

pp.:  132 – 132

5.2. Collisionless plasma basic equations

pp.:  132 – 134

5.3. General scheme and computation cycle of the method

pp.:  134 – 137

5.4. Conservation laws in model plasma

pp.:  137 – 146

5.5. Examples of applications

pp.:  146 – 151

6. Statistical particle-in-cell methods

pp.:  151 – 181

6.2. Kinetic equations of rarefied gas

pp.:  181 – 182

6.1. Introduction

pp.:  181 – 181

6.3. Some procedures of Monte Carlo methods

pp.:  182 – 190

6.4. Statistical particle methods

pp.:  190 – 195

6.5. Examples of the application

pp.:  195 – 211

Supplements

pp.:  211 – 216

B. Subroutines of interpolation between the Lagrangian and Eulerian meshes

pp.:  216 – 218

A. Subroutine of initial data preparation

pp.:  216 – 216

B1. Interpolation of the mesh vector-function to the Lagrangian mesh of particles

pp.:  218 – 218

B2. Interpolation of the scalar function from the Lagrangian mesh of particles to nodes of the Eulerian mesh

pp.:  218 – 219

B3. The subroutine of interpolation of generalized fields to the particle location on unstructured grids

pp.:  219 – 222

B4. The subroutine for assignment of the particle charge on unstructured grids

pp.:  222 – 223

B5. The subroutine for the determination of the scalar density in the nodes of unstructured grids

pp.:  223 – 224

C. Subroutine for the particle dynamics

pp.:  224 – 225

C2. The subroutine for relativistic particle pusher according to Boris

pp.:  225 – 228

C1. Subroutine for calculation of the particles dynamics in fields of mass forces

pp.:  225 – 225

D. The subroutines of a localization of particles on the unstructured grid

pp.:  228 – 229

D1. The subroutines of particle localization on two-dimensional triangular grid (Löhner’s algorithm)

pp.:  229 – 230

D2. The subroutines of particle localization on three-dimensional tetrahedrons grid (Assous algorithm)

pp.:  230 – 231

E. The subroutines for calculation of linear shape-functions on unstructured grids

pp.:  231 – 235

E2. The subroutine of calculation of the shape-functions with respect to the particle locations for three-dimensional case

pp.:  235 – 236

E1. The subroutine for calculation shape-functions with respect to the particle locations in two-dimensional case

pp.:  235 – 235

F. The auxiliary subroutines

pp.:  236 – 237

F3. The subroutine used in subroutine ploc3

pp.:  237 – 238

F1. The subroutine of determination of the local coordinates of point r (r-vector)

pp.:  237 – 237

F2. The subroutine for determination of auxiliary vectors of tetrahedrons with nodes (k1,k2,k3,k4)

pp.:  237 – 237

F4. The subroutine for Gauss elimination

pp.:  238 – 239

G. Subroutines for the solution of the Poisson equation (Poisson solvers)

pp.:  239 – 240

G2. Combined iteration method

pp.:  240 – 243

G1. Direct method

pp.:  240 – 240

H. Subroutine of numerical integration of the full system of Maxwell equations

pp.:  243 – 245

Bibliography

pp.:  245 – 249

LastPages

pp.:  249 – 261

The users who browse this book also browse