Lectures in Real Geometry ( De Gruyter Expositions in Mathematics )

Publication series :De Gruyter Expositions in Mathematics

Author: Fabrizio Broglia  

Publisher: De Gruyter‎

Publication year: 1996

E-ISBN: 9783110811117

P-ISBN(Paperback): 9783110150957

Subject: O182 Analytic Geometry

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics.

The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic.

Editorial Board

Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil
Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia
Walter D. Neumann, Columbia University, New York, USA
Markus J. Pflaum, University of Colorado, Boulder, USA
Dierk Schleicher, Jacobs University, Bremen, Germany

Chapter

Foreword

pp.:  1 – 7

Introduction

pp.:  7 – 9

1. Introduction

pp.:  15 – 15

2. Real closed fields

pp.:  15 – 18

3. Real root counting

pp.:  19 – 20

3.1. Sylvester sequence

pp.:  20 – 21

3.3. Sylvester-Habicht sequence

pp.:  26 – 32

3.4. Quadratic forms, Hankel matrices and real roots

pp.:  32 – 41

3.5. Summary and discussion

pp.:  41 – 49

4. Complexity of algorithms

pp.:  49 – 49

5. Sign determinations

pp.:  49 – 52

5.2. Thom’s lemma and its consequences

pp.:  52 – 59

5.1. Simultaneous inequalities

pp.:  52 – 52

6. Existential theory of reals

pp.:  59 – 62

6.2. Some real algebraic geometry

pp.:  62 – 67

6.1. Solving multivariate polynomial systems

pp.:  62 – 62

6.3. Finding points on hypersurfaces

pp.:  67 – 69

6.4. Finding non empty sign conditions

pp.:  69 – 74

References

pp.:  74 – 80

Nash functions and manifolds

pp.:  80 – 83

§2. Nash functions

pp.:  83 – 85

§1. Introduction

pp.:  83 – 83

§3. Approximation Theorem

pp.:  85 – 91

§4. Nash manifolds

pp.:  91 – 96

§5. Sheaf theory of Nash function germs

pp.:  96 – 104

§6. Nash groups

pp.:  104 – 114

References

pp.:  114 – 124

Approximation theorems in real analytic and algebraic geometry

pp.:  124 – 127

I. The analytic case

pp.:  127 – 128

Introduction

pp.:  127 – 127

2. A Whitney approximation theorem

pp.:  128 – 132

1. The Whitney topology for sections of a sheaf

pp.:  128 – 128

3. Approximation for sections of a sheaf

pp.:  132 – 140

4. Approximation for sheaf homomorphisms

pp.:  140 – 144

II. The algebraic case

pp.:  144 – 148

5. Preliminaries on real algebraic varieties

pp.:  148 – 148

6. A- and B-coherent sheaves

pp.:  148 – 153

7. The approximation theorems in the algebraic case

pp.:  153 – 159

III. Algebraic and analytic bundles

pp.:  159 – 162

8. Duality theory

pp.:  162 – 162

9. Strongly algebraic vector bundles

pp.:  162 – 170

10. Approximation for sections of vector bundles

pp.:  170 – 176

References

pp.:  176 – 178

Real abelian varieties and real algebraic curves

pp.:  178 – 181

1. Generalities on complex tori

pp.:  181 – 182

Introduction

pp.:  181 – 181

1.1. Complex tori

pp.:  182 – 182

1.2. Homology and cohomology of tori

pp.:  182 – 184

1.3. Morphisms of complex tori

pp.:  184 – 185

1.4. The Albanese and the Picard variety

pp.:  185 – 188

1.5. Line bundles on complex tori

pp.:  188 – 190

1.6. Polarizations

pp.:  190 – 191

1.7. Riemann’s bilinear relations and moduli spaces

pp.:  191 – 193

2. Real structures

pp.:  193 – 195

2.1. Definition of real structures

pp.:  195 – 196

2.2. Real models

pp.:  196 – 197

2.3. The action of conjugation on functions and forms

pp.:  197 – 199

2.4. The action of conjugation on cohomology

pp.:  199 – 202

2.5. A theorem of Comessatti

pp.:  202 – 205

2.6. Group cohomology

pp.:  205 – 209

2.7. The action of conjugation on the Albanese variety and the Picard group

pp.:  209 – 213

2.8. Period matrices in pseudonormal form and the Albanese map

pp.:  213 – 217

3. Real abelian varieties

pp.:  217 – 220

3.1. Real structures on complex tori

pp.:  220 – 220

3.2. Equivalence classes for real structures on complex tori

pp.:  220 – 225

3.3. Line bundles on complex tori with a real structure

pp.:  225 – 228

3.4. Riemann bilinear relations for principally polarized real varieties

pp.:  228 – 232

3.5. Moduli spaces of principally polarized real abelian varieties

pp.:  232 – 238

3.6. Real theta functions

pp.:  238 – 242

4. Applications to real curves

pp.:  242 – 244

4.1. The Jacobian of a real curve

pp.:  244 – 244

4.2. Real theta-characteristics

pp.:  244 – 252

4.3. Examples

pp.:  252 – 258

4.4. Moduli spaces and the theorem of Torelli

pp.:  258 – 262

4.5. Singular curves

pp.:  262 – 265

References

pp.:  265 – 268

Appendix

pp.:  268 – 271

Mario Raimondo’s contributions to real geometry

pp.:  271 – 271

Mario Raimondo’s contributions to computer algebra

pp.:  271 – 275

LastPages

pp.:  275 – 285

The users who browse this book also browse


No browse record.