Protein Evolution

Author: Laszlo Patthy  

Publisher: John Wiley & Sons Inc‎

Publication year: 2009

E-ISBN: 9781444308884

P-ISBN(Paperback): 9781405151665

P-ISBN(Hardback):  9781405151665

Subject: Q51 Protein

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

This book provides an up-to-date summary of the principles of protein evolution and discusses both the methods available to analyze the evolutionary history of proteins as well as those for predicting their structure-function relationships.


  • Includes a significantly expanded chapter on genome evolution to cover genomes of model organisms sequenced since the completion of the first edition, and organelle genome evolution
  • Retains its reader-friendly, accessible style and organization
  • Contains an updated glossary and new references, including a list of online reference sites

Chapter

Preface to the first edition

pp.:  9 – 11

Preface to the second edition

pp.:  11 – 13

Acknowledgements

pp.:  13 – 15

Introduction

pp.:  15 – 17

Chapter 1: Protein-coding genes

pp.:  17 – 18

1.2 Transcription

pp.:  19 – 26

1.3 Translation

pp.:  26 – 30

References

pp.:  30 – 31

Useful internet resources

pp.:  31 – 34

2.2 The amino acids

pp.:  34 – 39

2.1 The polypeptide backbone

pp.:  34 – 34

Chapter 2: Protein structure

pp.:  34 – 34

2.3.1 Enzymatic modifications

pp.:  39 – 43

2.3 Covalent modifications of amino acid side chains

pp.:  39 – 39

2.3.2 Nonenzymatic chemical modifications

pp.:  43 – 44

2.4.1 Noncovalent interactions

pp.:  44 – 45

2.4 Interactions that govern protein folding and stability

pp.:  44 – 44

2.4.2 The hydrophobic interaction

pp.:  45 – 46

2.5 Secondary structural elements

pp.:  46 – 46

2.5.1 The α α -helix

pp.:  46 – 47

2.5.2 β β -sheets

pp.:  47 – 48

2.5.3 Reverse turns

pp.:  48 – 48

2.6 Supersecondary structures

pp.:  48 – 49

2.7 Tertiary structures of proteins

pp.:  49 – 49

2.7.1 Globular proteins

pp.:  49 – 51

2.7.2 Fibrous proteins

pp.:  51 – 52

2.7.3 Unusual structures of internally repeated proteins

pp.:  52 – 53

2.7.4 Secreted proteins and membrane proteins

pp.:  53 – 56

2.7.5 Intrinsically disordered proteins

pp.:  56 – 56

2.8 Multidomain proteins

pp.:  56 – 56

2.9 Multisubunit proteins

pp.:  56 – 57

Useful internet resources

pp.:  57 – 61

References

pp.:  57 – 57

3.1 Types of mutations

pp.:  61 – 61

3.1.1 Substitutions

pp.:  61 – 64

Chapter 3: Mutations

pp.:  61 – 61

3.1.2 Deletion, duplication, insertion and fusion

pp.:  64 – 66

3.2 Factors affecting rates of mutation

pp.:  66 – 68

3.3 The fate of mutations

pp.:  68 – 75

3.4 The molecular clock

pp.:  75 – 77

References

pp.:  77 – 78

Useful internet resources

pp.:  78 – 79

Chapter 4: Evolution of protein-coding genes

pp.:  79 – 79

4.1 Alignment of nucleotide and amino acid sequences

pp.:  79 – 81

4.2 Estimating the number of nucleotide substitutions

pp.:  81 – 83

4.2.1 Substitutions in translated regions

pp.:  83 – 84

4.3 Rates and patterns of nucleotide substitution

pp.:  84 – 85

4.2.2 Substitutions in untranslated regions, introns and 5and 3flanking regions of protein-coding genes

pp.:  84 – 84

4.3.1 Rates of nucleotide substitution

pp.:  85 – 87

4.4 Variation in substitution rates

pp.:  87 – 88

4.4.1 Variation among different sites of the translated region

pp.:  88 – 90

4.4.2 Variation among genes

pp.:  90 – 91

4.4.3 Constancy and variation in substitution rates of orthologous genes

pp.:  91 – 92

4.4.4 Nonrandom substitutions at synonymous positions

pp.:  92 – 94

4.5.1 Phylogenetic trees

pp.:  94 – 95

4.5 Molecular phylogeny

pp.:  94 – 94

4.5.2 Tree reconstruction

pp.:  95 – 97

4.5.3 Tree-making methods

pp.:  97 – 101

References

pp.:  101 – 103

4.5.4 Estimation of species-divergence times

pp.:  101 – 101

Useful internet resources

pp.:  103 – 105

Chapter 5: Evolution of orthologous proteins

pp.:  105 – 107

5.1 Orthologous proteins with the same function in different species

pp.:  107 – 110

5.2 Orthologous proteins with modified function in different species

pp.:  110 – 114

5.4 Orthologous proteins that have lost their function

pp.:  114 – 115

5.3 Orthologous proteins with major modification of function

pp.:  114 – 114

5.6 Prediction of the function of orthologous proteins

pp.:  115 – 116

5.5 Orthologous proteins that have gained additional functions

pp.:  115 – 115

5.7 The three-dimensional structure of orthologous proteins

pp.:  116 – 116

5.7.1 Prediction of secondary structure of proteins

pp.:  116 – 118

5.7.2 Prediction of the three-dimensional structure of proteins

pp.:  118 – 119

5.8 Detecting sequence homology of protein-coding genes

pp.:  119 – 120

References

pp.:  120 – 121

Useful internet resources

pp.:  121 – 124

6.1 De novo formation of novel protein-coding genes

pp.:  124 – 126

Chapter 6: Formation of novel protein-coding genes

pp.:  124 – 124

6.2 Gene duplications

pp.:  126 – 127

6.2.1 Mechanisms of gene duplication

pp.:  127 – 133

6.2.2 Fate of duplicated genes

pp.:  133 – 137

6.2.3 Fate of genes acquired by lateral gene transfer

pp.:  137 – 137

6.2.4 Dating gene duplications

pp.:  137 – 140

References

pp.:  140 – 141

Useful internet resources

pp.:  141 – 142

Chapter 7: Evolution of paralogous proteins

pp.:  142 – 143

7.1.2 Processed genes

pp.:  143 – 146

7.1 Advantageous duplications

pp.:  143 – 143

7.1.1 Unprocessed genes

pp.:  143 – 143

7.2 Neutral duplications

pp.:  146 – 148

7.2.1 Modification of function by point mutations

pp.:  148 – 156

7.2.2 Major change of function by point mutations

pp.:  156 – 159

7.2.3 Major change of function by domain acquisitions

pp.:  159 – 163

7.3 Similarities and differences in the evolution of paralogous and orthologous proteins

pp.:  163 – 166

7.4 Predicting the function of proteins by homology

pp.:  166 – 167

7.5 Nonhomology-based methods for the prediction of the function of proteins

pp.:  167 – 168

7.6 Detecting distant homology of protein-coding genes

pp.:  168 – 168

7.6.1 Detecting distant homology by consensus approaches

pp.:  168 – 177

7.6.2 Detecting distant homology by comparing three-dimensional structures

pp.:  177 – 178

7.6.3 Detecting distant homology by comparing exon–intron structures

pp.:  178 – 179

References

pp.:  179 – 182

Useful internet resources

pp.:  182 – 186

Chapter 8: Protein evolution by assembly from modules

pp.:  186 – 187

8.1 Modular assembly by intronic recombination

pp.:  187 – 189

8.1.1 Introns

pp.:  189 – 198

8.1.2 Internal gene duplications/deletions via recombination in introns

pp.:  198 – 199

8.1.4 Exon shuffling via recombination in introns

pp.:  199 – 208

8.1.3 Fusion of genes via recombination in introns

pp.:  199 – 199

8.1.5 Factors affecting acceptance of mutants created by intronic recombination

pp.:  208 – 215

8.1.6 Classification of modules and mosaic proteins produced by exon shuffling

pp.:  215 – 223

8.1.7 Genome evolution and the evolution of exon shuffling

pp.:  223 – 225

8.1.8 Evolutionary significance of exon shuffling

pp.:  225 – 227

8.2 Modular assembly by exonic recombination

pp.:  227 – 229

8.1.9 Genome evolution and the evolution of alternative splicing

pp.:  227 – 227

References

pp.:  229 – 232

Useful internet resources

pp.:  232 – 234

Chapter 9: Genome evolution and protein evolution

pp.:  234 – 234

9.1 Evolution of genome size

pp.:  234 – 237

9.2 The role and survival of nongenic DNA

pp.:  237 – 237

9.3 Repetitiveness of genomic DNA

pp.:  237 – 239

9.4 Mechanisms responsible for increases in genome size

pp.:  239 – 240

9.5 Compositional organization of eukaryotic genomes

pp.:  240 – 241

9.6 Genomes of model organisms

pp.:  241 – 242

9.6.1 Viral genomes

pp.:  242 – 246

9.6.2 Cellular genomes

pp.:  246 – 247

9.6.2.1 Eubacterial genomes

pp.:  247 – 254

9.6.2.2 Archaeal genomes

pp.:  254 – 257

9.6.2.3 Organelle genomes

pp.:  257 – 260

9.6.2.4 Eukaryotic genomes

pp.:  260 – 287

9.6.2.5 Genome duplications in the evolution of early vertebrates

pp.:  287 – 292

9.6.3 Value of comparative genomics for the identification of functional elements

pp.:  292 – 293

9.6.4 Finding protein-coding genes in genome sequences

pp.:  293 – 296

9.8 Changes in gene number and gene density in different evolutionary lineages

pp.:  296 – 298

9.7 The genome of the cenancestor

pp.:  296 – 296

9.9 Proteome evolution

pp.:  298 – 298

9.9.1 Proteome evolution – classification of proteins by structural features

pp.:  298 – 299

9.9.2 Proteome evolution – classification of proteins by homology

pp.:  299 – 299

9.9.3 Proteome evolution – classification of proteins by function

pp.:  299 – 303

9.9.4 Proteome evolution – evolution of proteome complexity

pp.:  303 – 307

9.9.5 Proteome evolution and organismic complexity

pp.:  307 – 309

References

pp.:  309 – 318

Useful internet resources

pp.:  318 – 325

Glossary

pp.:  325 – 383

Index

pp.:  383 – 393

The users who browse this book also browse