

Author: Duncan Kathleen
Publisher: Taylor & Francis Ltd
ISSN: 1058-8337
Source: Journal of Soil Contamination, Vol.12, Iss.2, 2003-03, pp. : 181-206
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
In 1992, a study was begun to compare the effect of landfarming vs. natural attenuation on the restoration of soil that had been contaminated with crude oil. Each of three lysimeters was filled with a sandy loam topsoil, and crude oil was applied to two of the lysimeters. One of the contaminated lysimeters was tilled, watered, and received a one-time application of fertilizer (N, P, K). No amendments were added to the second contaminated lysimeter, and the third was left uncontaminated. The lysimeters were monitored for 6 months and then left unattended. In 1995 and again in 1997 we sampled these lysimeters to evaluate the long-term effects of contamination and bioremediation. In 1995 we found marked effects on soil chemistry, bacterial, fungal, nematode, and plant populations and a higher rate of bioremediation in the fertilized-contaminated lysimeter (Lawlor et al., 1997). Data from 1997 and previously unreported data from 1995 are the subject of the current report. In 1997, low densities of hydrocarbon-degrading bacteria were found in all the lysimeters and little loss of TPH from the two contaminated lysimeters, suggesting a decreased rate of bioremediation. Nevertheless, there were increases in diversity and number of functional groups of bacteria, nematodes, and native plant species. However, molecular analyses revealed marked differences remained in the composition of dominant eubacterial species, and tests of soybeans indicated field conditions remained unsuitable for these plants.
Related content







