Post-thermocycling shear bond strength of a gingiva-colored indirect composite layering material to three implant framework materials

Author: Komine Futoshi   Koizuka Mai   Fushiki Ryosuke   Taguchi Kohei   Kamio Shingo   Matsumura Hideo  

Publisher: Informa Healthcare

ISSN: 0001-6357

Source: Acta Odontologica Scandinavica, Vol.71, Iss.5, 2013-09, pp. : 1092-1100

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Abstract Objective. To evaluate shear bond strength of a gingiva-colored indirect composite to three implant framework materials, before and after thermocycling, and verify the effect of surface pre-treatment for each framework. Materials and methods. Commercially pure titanium (CP-Ti), American Dental Association (ADA) type 4 casting gold alloy (Type IV) and zirconia ceramics (Zirconia) were assessed. For each substrate, 96 disks were divided into six groups and primed with one of the following primers: Alloy Primer (ALP), Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB+Activator), Estenia Opaque Primer (EOP), Metal Link (MLP) and V-Primer (VPR). The specimens were then bonded to a gingiva-colored indirect composite (Ceramage Concentrate GUM-D). Shear bond strengths were measured at 0 and 20 000 thermocycles and data were analyzed with the Steel-Dwass test and Mann-Whitney U-test. Results. Shear bond strengths were significantly lower after thermocycling, with the exception of Type IV specimens primed with CPB (p = 0.092) or MLP (p = 0.112). For CP-Ti and Zirconia specimens, priming with CPB or CPB+Activator produced significantly higher bond strengths at 0 and 20 000 thermocycles, as compared with the other groups. For Type IV specimens, priming with ALP or MLP produced higher bond strengths at 0 and 20 000 thermocycles. Conclusions. Shear bond strength of a gingiva-colored indirect composite to CP-Ti, gold alloy and zirconia ceramics was generally lower after thermocycling. Application of a hydrophobic phosphate monomer and polymerization initiator was effective in maintaining bond strength of CP-Ti and zirconia ceramics. Combined use of a thione monomer and phosphoric monomer enhanced the durable bond strength of gold alloy.

Related content