

Author: Hu F.Q.
Publisher: Academic Press
ISSN: 0021-9991
Source: Journal of Computational Physics, Vol.120, Iss.2, 1995-09, pp. : 340-347
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
In this paper, we present a new numerical formulation of solving the boundary integral equations reformulated from the Helmholtz equation. The boundaries of the problems are assumed to be smooth closed contours. The solution on the boundary is treated as a periodic function, which is in turn approximated by a truncated Fourier series. A Fourier collocation method is followed in which the boundary integral equation is transformed into a system of algebraic equations. It is shown that in order to achieve spectral accuracy for the numerical formulation, the non-smoothness of the integral kernels, associated with the Helmholtz equation, must be carefully removed. The emphasis of the paper is on investigating the essential elements of removing the non-smoothness of the integral kernels in the spectral implementation. The present method is robust for a general smooth boundary contour. Aspects of efficient implementation of the method using FFT are also discussed. Numerical examples of wave scattering are given in which the exponential accuracy of the present numerical method is demonstrated.
Related content


Galerkin–Legendre Spectral Method for the 3D Helmholtz Equation
Journal of Computational Physics, Vol. 161, Iss. 2, 2000-07 ,pp. :





