Calculus :Introductory Theory and Applications in Physical and Life Science

Publication subTitle :Introductory Theory and Applications in Physical and Life Science

Author: Johnson   R. M.  

Publisher: Elsevier Science‎

Publication year: 1995

E-ISBN: 9780857099860

P-ISBN(Paperback): 9781898563068

P-ISBN(Hardback):  9781898563068

Subject: O241 数值分析

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

This lucid and balanced introduction for first year engineers and applied mathematicians conveys the clear understanding of the fundamentals and applications of calculus, as a prelude to studying more advanced functions. Short and fundamental diagnostic exercises at the end of each chapter test comprehension before moving to new material.

  • Provides a clear understanding of the fundamentals and applications of calculus, as a prelude to studying more advanced functions
  • Includes short, useful diagnostic exercises at the end of each chapter

Chapter

Front Cover

pp.:  1 – 4

ABOUT OUR AUTHOR

pp.:  3 – 10

Copyright Page

pp.:  5 – 6

Table of Contents

pp.:  6 – 3

Preface

pp.:  10 – 12

Chapter 1. Limits and Differentiation

pp.:  25 – 55

Chapter 2. Differentiation of Products and Quotients

pp.:  55 – 67

Chapter 3. Higher-order Derivatives

pp.:  67 – 83

Chapter 4. Integration

pp.:  83 – 104

Chapter 5. Definite Integrals

pp.:  104 – 130

Chapter 6. Stationary Points and Points of Inflexion

pp.:  130 – 157

Chapter 7. Applications of the Function of a Function Rule

pp.:  157 – 174

Chapter 8. The Exponential, Logarithmic and Hyperbolic Functions

pp.:  174 – 203

Chapter 9. Inverse Trigonometric and Hyperbolic Functions

pp.:  203 – 220

Chapter 10. Methods of Integration

pp.:  220 – 242

Chapter 11. Further Applications of Integration

pp.:  242 – 275

Chapter 12. Approximate Integration

pp.:  275 – 285

Chapter 13. Infinite Series

pp.:  285 – 301

Chapter 14. Differential Equations

pp.:  301 – 328

Table 1 The derivatives of common functions

pp.:  328 – 329

Table 2 Standard integrals

pp.:  329 – 330

Index

pp.:  330 – 338

The users who browse this book also browse