Deep Implants: Fundamentals and Applications ( Volume 3 )

Publication series :Volume 3

Author: Bentini   G. G.;Golanski   A.;Kalbitzer   S.  

Publisher: Elsevier Science‎

Publication year: 1989

E-ISBN: 9780444596376

P-ISBN(Paperback): 9780444873323

P-ISBN(Hardback):  9780444873323

Subject: O413 quantum theory;TN4 microelectronics, integrated circuit (IC)

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Deep implants are produced by the high-energy implantation of impurities in a host material. The thus created subsurface layers have properties that are different from the very surface and the bulk and show great promise for application in the electronics industry.

Chapter

Front Cover

pp.:  1 – 4

Deep Implants

pp.:  4 – 5

Copyright Page

pp.:  5 – 6

Table of Contents

pp.:  6 – 10

Chapter 2. The δ doping layer: electronic properties and device perspectives

pp.:  18 – 26

Chapter 3. High temperature superconducting ceramics

pp.:  26 – 34

Chapter 4. Megaelectronvolt implantations in silicon very-large-scale integration

pp.:  34 – 48

Chapter 5. High energy implanted transistor fabrication

pp.:  48 – 54

Chapter 6. Dynamic computer simulation of high energy ion implantation

pp.:  54 – 60

Chapter 7. Lupin-3D: a three-dimensional calculation of damage energy distribution and cascade parameters for ion-implanted materials

pp.:  60 – 66

Chapter 8. Monte carlo simulations of ion implantation in crystalline targets

pp.:  66 – 74

Chapter 9. Interaction of megaelectronvolt ion beams with silicon: amorphization, recrystallization and diffusion

pp.:  74 – 82

Chapter 10. Depth distributions of megaelectronvolt 14N implanted into various solids at elevated fluences

pp.:  82 – 88

Chapter 11. Experimental and calculated range moments of deep implants

pp.:  88 – 96

Chapter 12. Depth profiles and damage annealing of 1.06 MeV As2+ implanted in silicon

pp.:  96 – 102

Chapter 13. Implants of 15–50 MeV boron ions into silicon

pp.:  102 – 108

Chapter 14. Results of boron implantation into silicon diodes and metal–oxide–semiconductor gate-controlled turn-off thyristors

pp.:  108 – 114

Chapter 15. Beryllium-bombarded In0.53 Ga0.47As and InP Photocondutors with Response Times below 3 ps

pp.:  114 – 120

Chapter 16. Proton-irradiated silicon: complete electrical characterization of the induced dominant deep defects after long-term annealing

pp.:  120 – 124

Chapter 17. A study of the distribution of hydrogen and strain in proton-bombarded liquid-encapsulated Czochralski-grown GaAs by double-crystal X-ray diffraction and secondary ion mass spectrometry

pp.:  124 – 132

Chapter 18. Comparison between "intermediate"- and "heavy"-ion-bombardment-induced silicon amorphization at room temperature

pp.:  132 – 138

Chapter 19. Electronic properties of defects created by 1.6 GeV argon ions in silicon

pp.:  138 – 144

Chapter 20. Current status of the technology of silicon separated by implantation of oxygen

pp.:  144 – 156

Chapter 21. A silicon-on-insulator structure formed by implantation of megaelectronvolt oxygen

pp.:  156 – 164

Chapter 22. Non-destructive characterization of nitrogen-implanted silicon-on-insulator structures by spectroscopic ellipsometry

pp.:  164 – 172

Chapter 23. Deep implants by channeling implantation

pp.:  172 – 178

Chapter 24. Lattice damage and suicide formation by deep implantations into silicon

pp.:  178 – 190

Chapter 25. Growth of buried silicon nitride layers induced by fast thermal annealing of N2 + -implanted silicon substrates

pp.:  190 – 196

Chapter 26. Piezoresistive properties under hydrostatic pressure of silicon layers separated by oxygen implantation

pp.:  196 – 200

Chapter 27. Ion beam effects on polymers: the influence of energy loss and molecular parameters

pp.:  200 – 210

Chapter 28. Photoresist outgassing and carbonization during high energy ion implantation

pp.:  210 – 216

Chapter 29. Modifications by rare gas bombardment of aluminium nitride formed by direct implantation

pp.:  216 – 222

Chapter 30. Nitrogen implantation into metals: a numerical model to explain the high temperature shape of the nitrogen depth profile

pp.:  222 – 228

Chapter 31. Temperature and dose dependences of nitrogen implantation into iron

pp.:  228 – 236

Chapter 32. Investigation of the Ag–Si interface formed under simultaneous irradiation using a high energy ion beam

pp.:  236 – 240

Chapter 33. Thermal wave characterization of silicon which had been high energy ion implanted and furnace annealed

pp.:  240 – 244

Chapter 34. An approach to a new machine design for implantation at medium and high energies

pp.:  244 – 250

Chapter 35. ARAMIS: an accelerator for research on astrophysics, microanalysis and implantation in solids

pp.:  250 – 256

Chapter 36. Linear-accelerator-based high energy implanter with milliampere capability

pp.:  256 – 264

Chapter 37. Design study of high energy, high current, r.f. accelerators for ion implantation

pp.:  264 – 270

Chapter 38. The Dynamitron tandem accelerator—a useful tool for ion beam applications

pp.:  270 – 276

Chapter 39. Features and applications of a versatile megavolt ion accelerator

pp.:  276 – 282

Chapter 40. Megaelectronvolt implants into GaAs using a hot-cathode Penning ion source

pp.:  282 – 288

Author Index

pp.:  288 – 290

Subject Index

pp.:  290 – 293

The users who browse this book also browse