Chapter
Chapter 2. The δ doping layer: electronic properties and device perspectives
pp.:
18 – 26
Chapter 3. High temperature superconducting ceramics
pp.:
26 – 34
Chapter 4. Megaelectronvolt implantations in silicon very-large-scale integration
pp.:
34 – 48
Chapter 5. High energy implanted transistor fabrication
pp.:
48 – 54
Chapter 6. Dynamic computer simulation of high energy ion implantation
pp.:
54 – 60
Chapter 7. Lupin-3D: a three-dimensional calculation of damage energy distribution and cascade parameters for ion-implanted materials
pp.:
60 – 66
Chapter 8. Monte carlo simulations of ion implantation in crystalline targets
pp.:
66 – 74
Chapter 9. Interaction of megaelectronvolt ion beams with silicon: amorphization, recrystallization and diffusion
pp.:
74 – 82
Chapter 10. Depth distributions of megaelectronvolt 14N implanted into various solids at elevated fluences
pp.:
82 – 88
Chapter 11. Experimental and calculated range moments of deep implants
pp.:
88 – 96
Chapter 12. Depth profiles and damage annealing of 1.06 MeV As2+ implanted in silicon
pp.:
96 – 102
Chapter 13. Implants of 15–50 MeV boron ions into silicon
pp.:
102 – 108
Chapter 14. Results of boron implantation into silicon diodes and metal–oxide–semiconductor gate-controlled turn-off thyristors
pp.:
108 – 114
Chapter 15. Beryllium-bombarded In0.53 Ga0.47As and InP Photocondutors with Response Times below 3 ps
pp.:
114 – 120
Chapter 16. Proton-irradiated silicon: complete electrical characterization of the induced dominant deep defects after long-term annealing
pp.:
120 – 124
Chapter 17. A study of the distribution of hydrogen and strain in proton-bombarded liquid-encapsulated Czochralski-grown GaAs by double-crystal X-ray diffraction and secondary ion mass spectrometry
pp.:
124 – 132
Chapter 18. Comparison between "intermediate"- and "heavy"-ion-bombardment-induced silicon amorphization at room temperature
pp.:
132 – 138
Chapter 19. Electronic properties of defects created by 1.6 GeV argon ions in silicon
pp.:
138 – 144
Chapter 20. Current status of the technology of silicon separated by implantation of oxygen
pp.:
144 – 156
Chapter 21. A silicon-on-insulator structure formed by implantation of megaelectronvolt oxygen
pp.:
156 – 164
Chapter 22. Non-destructive characterization of nitrogen-implanted silicon-on-insulator structures by spectroscopic ellipsometry
pp.:
164 – 172
Chapter 23. Deep implants by channeling implantation
pp.:
172 – 178
Chapter 24. Lattice damage and suicide formation by deep implantations into silicon
pp.:
178 – 190
Chapter 25. Growth of buried silicon nitride layers induced by fast thermal annealing of N2 + -implanted silicon substrates
pp.:
190 – 196
Chapter 26. Piezoresistive properties under hydrostatic pressure of silicon layers separated by oxygen implantation
pp.:
196 – 200
Chapter 27. Ion beam effects on polymers: the influence of energy loss and molecular parameters
pp.:
200 – 210
Chapter 28. Photoresist outgassing and carbonization during high energy ion implantation
pp.:
210 – 216
Chapter 29. Modifications by rare gas bombardment of aluminium nitride formed by direct implantation
pp.:
216 – 222
Chapter 30. Nitrogen implantation into metals: a numerical model to explain the high temperature shape of the nitrogen depth profile
pp.:
222 – 228
Chapter 31. Temperature and dose dependences of nitrogen implantation into iron
pp.:
228 – 236
Chapter 32. Investigation of the Ag–Si interface formed under simultaneous irradiation using a high energy ion beam
pp.:
236 – 240
Chapter 33. Thermal wave characterization of silicon which had been high energy ion implanted and furnace annealed
pp.:
240 – 244
Chapter 34. An approach to a new machine design for implantation at medium and high energies
pp.:
244 – 250
Chapter 35. ARAMIS: an accelerator for research on astrophysics, microanalysis and implantation in solids
pp.:
250 – 256
Chapter 36. Linear-accelerator-based high energy implanter with milliampere capability
pp.:
256 – 264
Chapter 37. Design study of high energy, high current, r.f. accelerators for ion implantation
pp.:
264 – 270
Chapter 38. The Dynamitron tandem accelerator—a useful tool for ion beam applications
pp.:
270 – 276
Chapter 39. Features and applications of a versatile megavolt ion accelerator
pp.:
276 – 282
Chapter 40. Megaelectronvolt implants into GaAs using a hot-cathode Penning ion source
pp.:
282 – 288
Author Index
pp.:
288 – 290
Subject Index
pp.:
290 – 293