Microtubules: in vivo :in vivo ( Volume 97 )

Publication subTitle :in vivo

Publication series :Volume 97

Author: Cassimeris   Lynne;Tran   Phong  

Publisher: Elsevier Science‎

Publication year: 2010

E-ISBN: 9780123813503

P-ISBN(Paperback): 9780123813497

P-ISBN(Hardback):  9780123813497

Subject: Q2 Cytobiology

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Microtubules: in vivo includes chapters by experts around the world on many aspects of microtubule imaging in living and fixed cells; assays to study microtubule function in a wide array of model organisms and cultured cells; high resolution approaches to study of the cytoskeleton. The authors share their years of experience, outlining potential pitfalls and critical factors to consider in experimental design, experimental implementation and data interpretation.

  • Includes chapters by experts around the world on many aspects of microtubule imaging in living and fixed cells; assays to study microtubule function in a wide array of model organisms and cultured cells; high resolution approaches to study of the cytoskeleton
  • The authors share their years of experience, outlining potential pitfalls and critical factors to consider in experimental design, experimental implementation and data interpretation

Chapter

Cover

pp.:  1 – 2

Methods in Cell Biology

pp.:  2 – 5

Copyright

pp.:  5 – 6

Contents

pp.:  6 – 14

Contributors

pp.:  14 – 18

Preface

pp.:  18 – 20

I. Introduction

pp.:  21 – 22

II. Methods and Materials

pp.:  22 – 31

References

pp.:  31 – 34

III. Discussion and Summary

pp.:  31 – 31

2. Analysis of Microtubule Polymerization Dynamics in Live Cells

pp.:  34 – 35

I. Introduction

pp.:  35 – 36

II. Rationale

pp.:  36 – 37

III. Imaging and Analysis of Homogeneously Labeled MTs

pp.:  37 – 45

IV. MT Fluorescent Speckle Microscopy

pp.:  45 – 46

V. Imaging and Analysis of Growing MT Ends

pp.:  46 – 49

VI. Conclusion

pp.:  49 – 50

References

pp.:  50 – 54

3. The Use of Fluorescence Redistribution After Photobleaching for Analysisof Cellular Microtubule Dynamics

pp.:  54 – 55

I. Introduction

pp.:  55 – 56

II. Choice and Preparation of Cells

pp.:  56 – 57

III. Maintaining Cell Viability While Imaging

pp.:  57 – 59

IV. Imaging and Data Analysis

pp.:  59 – 70

V. Summary and Conclusions

pp.:  70 – 71

Reference

pp.:  71 – 72

4. Kinetochore–Microtubule Dynamics and Attachment Stability

pp.:  72 – 73

II. Materials

pp.:  73 – 76

I. Introduction

pp.:  73 – 73

III. Methods

pp.:  76 – 93

IV. Summary and Conclusions

pp.:  93 – 94

References

pp.:  94 – 100

5. Photoactivatable Green Fluorescent Protein-Tubulin

pp.:  100 – 101

I. Introduction

pp.:  101 – 108

II. Conclusions

pp.:  108 – 109

References

pp.:  109 – 110

6. Microtubule Dynamics at the Cell Cortex Probed by TIRF Microscopy

pp.:  110 – 111

I. Introduction

pp.:  111 – 112

II. Rationale

pp.:  112 – 115

III. Materials and Equipment

pp.:  115 – 119

IV. Methods

pp.:  119 – 122

V. Discussion

pp.:  122 – 126

References

pp.:  126 – 130

VI. Summary

pp.:  126 – 126

7. Microtubule Dynamics in Dendritic Spines

pp.:  130 – 131

I. Introduction

pp.:  131 – 132

II. Rationale

pp.:  132 – 134

III. Culturing Primary Hippocampal Neurons

pp.:  134 – 138

IV. Expression of EB3-GFP in Hippocampal Neurons UsingLipophilic Transfection

pp.:  138 – 140

V. Expression of EB3-GFP in Hippocampal Neurons Using SFV

pp.:  140 – 143

VI. Imaging EB3-GFP by TIRF and Spinning Disk Microscopy

pp.:  143 – 147

VII. Data Analysis

pp.:  147 – 148

VIII. Conclusion

pp.:  148 – 149

References

pp.:  149 – 152

8. Protein Micropatterns: A Direct Printing Protocol Using Deep UVs

pp.:  152 – 153

I. Introduction

pp.:  153 – 154

II. Designing a Photomask

pp.:  154 – 155

III. Micropatterned Substrate Fabrication

pp.:  155 – 160

IV. Cell Deposition

pp.:  160 – 161

V. Discussion

pp.:  161 – 165

References

pp.:  165 – 166

VI. General Conclusions

pp.:  165 – 165

9. New and Old Reagents for Fluorescent Protein Tagging of Microtubulesin Fission Yeast: Experimental and Critical Evaluation

pp.:  166 – 167

I. Introduction

pp.:  167 – 168

II. Which GFP-Tubulin Should I Use?

pp.:  168 – 173

IV. Generation and Evaluation of New RFPs in Fission Yeast

pp.:  173 – 179

III. Searching for the “GFP” of RFPs

pp.:  173 – 173

V. The Hunt for Red Tubulin

pp.:  179 – 185

VI. Successful Fluorescent Imaging of Fission Yeast Microtubules andAssociated Proteins

pp.:  185 – 187

References

pp.:  187 – 192

10. Optical Trapping and Laser Ablation of Microtubules in Fission Yeast

pp.:  192 – 193

II. Optical Manipulation

pp.:  193 – 195

I. Introduction

pp.:  193 – 193

III. Optical Tweezing in Fission Yeast

pp.:  195 – 197

IV. Laser Ablation of Microtubules

pp.:  197 – 200

V. Methods

pp.:  200 – 201

References

pp.:  201 – 204

11. A Fast Microfluidic Temperature Control Device for Studying MicrotubuleDynamics in Fission Yeast

pp.:  204 – 205

I. Introduction

pp.:  205 – 206

II. Device and Setup Presentation

pp.:  206 – 207

III. Mold and Device Fabrication

pp.:  207 – 213

IV. Setup Installation

pp.:  213 – 215

V. Biological Experiments

pp.:  215 – 219

VII. Materials

pp.:  219 – 220

VI. Conclusion

pp.:  219 – 219

References

pp.:  220 – 222

12. Microtubule-Dependent Spatial Organization of Mitochondria in Fission Yeast

pp.:  222 – 223

I. Introduction

pp.:  223 – 225

II. Visualization of Mitochondria in Fission Yeast

pp.:  225 – 233

III. Functional Analysis of MT–Mitochondria Interactionin Live Cells

pp.:  233 – 234

IV. Purification and Subfractionation of Fission YeastMitochondria

pp.:  234 – 238

References

pp.:  238 – 242

13. Microscopy Methods for the Study of Centriole Biogenesis and Functionin Drosophila

pp.:  242 – 243

I. Introduction

pp.:  243 – 245

II. Centrioles in Drosophila Early Embryogenesis

pp.:  245 – 252

III. Centrioles in Drosophila Spermatogenesis

pp.:  252 – 259

References

pp.:  259 – 262

14. Drosophila S2 Cells as a Model System to Investigate Mitotic Spindle Dynamics,Architecture, and Function

pp.:  262 – 263

I. Introduction

pp.:  263 – 265

II. Methods

pp.:  265 – 273

References

pp.:  273 – 278

15. Assessment of Mitotic Spindle Phenotypes in Drosophila S2 Cells

pp.:  278 – 279

I. Introduction

pp.:  279 – 280

II. Rationale

pp.:  280 – 281

III. Material Check

pp.:  281 – 283

IV. RNAi and Cell Imaging

pp.:  283 – 286

V. Typical Phenotypes

pp.:  286 – 290

VI. How to Avoid Recording False Positives

pp.:  290 – 292

VII. Summary

pp.:  292 – 293

References

pp.:  293 – 296

I. Introduction

pp.:  296 – 299

16. Analysis of Microtubules in Budding Yeast

pp.:  296 – 296

II. The Cellular Toolbox for Analysis of Microtubulesin Budding Yeast

pp.:  299 – 306

III. Microscopy and Data Collection

pp.:  306 – 311

IV. Methods of Analysis

pp.:  311 – 317

References

pp.:  317 – 326

17. Imaging and Analysis of the Microtubule Cytoskeleton in Giardia

pp.:  326 – 327

II. Structural Elements of the Giardial MT Cytoskeleton

pp.:  327 – 336

I. Introduction

pp.:  327 – 327

III. Culture and Molecular Genetic Techniques

pp.:  336 – 344

IV. Imaging of the Cytoskeleton and Associated Proteins Using LightMicroscopy

pp.:  344 – 351

V. EM of Trophozoites and Cysts

pp.:  351 – 352

VI. Other Cytoskeletal Methods

pp.:  352 – 353

VII. Perspectives

pp.:  353 – 355

References

pp.:  355 – 360

18. Live Cell-Imaging Techniques for Analyses of Microtubulesin Dictyostelium

pp.:  360 – 361

I. Introduction

pp.:  361 – 364

III. Specimen Preparation for Live Cell Imaging of Dictyostelium Amoebae

pp.:  364 – 366

II. Rationale

pp.:  364 – 364

IV. Setup and Settings for Live Cell Fluorescence Microscopyof Dictyostelium Microtubules

pp.:  366 – 371

V. Analysis of Microtubule Dynamics by FRAP

pp.:  371 – 375

References

pp.:  375 – 378

19. Imaging of Mitotic Spindle Dynamics in Caenorhabditis elegans Embryos

pp.:  378 – 379

I. Introduction

pp.:  379 – 380

II. Immunofluorescence Staining for Microtubule Observationin C. elegans Embryos

pp.:  380 – 382

III. Live Imaging of Fluorescent-Tagged Proteins inC. elegans Embryos

pp.:  382 – 390

IV. Summary

pp.:  390 – 391

References

pp.:  391 – 392

20. Microtubule Dynamics in Plant Cells

pp.:  392 – 393

I. Introduction

pp.:  393 – 394

III. Methods

pp.:  394 – 411

II. Rationale

pp.:  394 – 394

IV. Materials

pp.:  411 – 414

V. Outlook

pp.:  414 – 415

References

pp.:  415 – 420

21. Melanophores for Microtubule Dynamics and Motility Assays

pp.:  420 – 421

I. Introduction

pp.:  421 – 422

II. Experimental Procedures

pp.:  422 – 429

III. Discussion

pp.:  429 – 432

References

pp.:  432 – 434

22. Imaging Cilia in Zebrafish

pp.:  434 – 435

I. Introduction

pp.:  435 – 436

II. Methods

pp.:  436 – 453

References

pp.:  453 – 456

III. Conclusions

pp.:  453 – 453

23. Modeling Microtubule-Mediated Forces and Centrosome Positioningin Caenorhabditis elegans Embryos

pp.:  456 – 457

I. Introduction

pp.:  457 – 458

II. Rationale

pp.:  458 – 462

III. Methods

pp.:  462 – 469

IV. Discussion

pp.:  469 – 469

V. Summary

pp.:  469 – 470

References

pp.:  470 – 474

24. Cryo-Electron Tomography of Cellular Microtubules

pp.:  474 – 475

I. Introduction

pp.:  475 – 478

III. Materials and Methods

pp.:  478 – 489

II. Rationale

pp.:  478 – 478

IV. Summary and Outlook

pp.:  489 – 490

References

pp.:  490 – 494

25. Automated Identification of Microtubules in Cellular Electron Tomography

pp.:  494 – 495

I. Introduction

pp.:  495 – 496

II. Overview

pp.:  496 – 497

III. Preprocessing: Finding Points in Microtubules

pp.:  497 – 504

IV. Tracking: Connecting Points into Lines

pp.:  504 – 512

V. Validation and Future Work

pp.:  512 – 514

References

pp.:  514 – 516

26. Quality Control in Single-Molecule Studies of Kinesins andMicrotubule-Associated Proteins

pp.:  516 – 517

I. Introduction

pp.:  517 – 518

II. Problems in Single-Molecule Detection

pp.:  518 – 520

III. Quality Control Steps

pp.:  520 – 524

IV. Summary

pp.:  524 – 525

References

pp.:  525 – 526

Subject Index

pp.:  526 – 542

Volumes in Series

pp.:  542 – 550

The users who browse this book also browse