Chapter
III. Discussion and Summary
pp.:
31 – 31
2. Analysis of Microtubule Polymerization Dynamics in Live Cells
pp.:
34 – 35
I. Introduction
pp.:
35 – 36
II. Rationale
pp.:
36 – 37
III. Imaging and Analysis of Homogeneously Labeled MTs
pp.:
37 – 45
IV. MT Fluorescent Speckle Microscopy
pp.:
45 – 46
V. Imaging and Analysis of Growing MT Ends
pp.:
46 – 49
VI. Conclusion
pp.:
49 – 50
3. The Use of Fluorescence Redistribution After Photobleaching for Analysisof Cellular Microtubule Dynamics
pp.:
54 – 55
I. Introduction
pp.:
55 – 56
II. Choice and Preparation of Cells
pp.:
56 – 57
III. Maintaining Cell Viability While Imaging
pp.:
57 – 59
IV. Imaging and Data Analysis
pp.:
59 – 70
V. Summary and Conclusions
pp.:
70 – 71
4. Kinetochore–Microtubule Dynamics and Attachment Stability
pp.:
72 – 73
II. Materials
pp.:
73 – 76
I. Introduction
pp.:
73 – 73
III. Methods
pp.:
76 – 93
IV. Summary and Conclusions
pp.:
93 – 94
5. Photoactivatable Green Fluorescent Protein-Tubulin
pp.:
100 – 101
I. Introduction
pp.:
101 – 108
II. Conclusions
pp.:
108 – 109
References
pp.:
109 – 110
6. Microtubule Dynamics at the Cell Cortex Probed by TIRF Microscopy
pp.:
110 – 111
I. Introduction
pp.:
111 – 112
II. Rationale
pp.:
112 – 115
III. Materials and Equipment
pp.:
115 – 119
IV. Methods
pp.:
119 – 122
V. Discussion
pp.:
122 – 126
References
pp.:
126 – 130
VI. Summary
pp.:
126 – 126
7. Microtubule Dynamics in Dendritic Spines
pp.:
130 – 131
I. Introduction
pp.:
131 – 132
II. Rationale
pp.:
132 – 134
III. Culturing Primary Hippocampal Neurons
pp.:
134 – 138
IV. Expression of EB3-GFP in Hippocampal Neurons UsingLipophilic Transfection
pp.:
138 – 140
V. Expression of EB3-GFP in Hippocampal Neurons Using SFV
pp.:
140 – 143
VI. Imaging EB3-GFP by TIRF and Spinning Disk Microscopy
pp.:
143 – 147
VII. Data Analysis
pp.:
147 – 148
VIII. Conclusion
pp.:
148 – 149
References
pp.:
149 – 152
8. Protein Micropatterns: A Direct Printing Protocol Using Deep UVs
pp.:
152 – 153
I. Introduction
pp.:
153 – 154
II. Designing a Photomask
pp.:
154 – 155
III. Micropatterned Substrate Fabrication
pp.:
155 – 160
IV. Cell Deposition
pp.:
160 – 161
V. Discussion
pp.:
161 – 165
References
pp.:
165 – 166
VI. General Conclusions
pp.:
165 – 165
9. New and Old Reagents for Fluorescent Protein Tagging of Microtubulesin Fission Yeast: Experimental and Critical Evaluation
pp.:
166 – 167
I. Introduction
pp.:
167 – 168
II. Which GFP-Tubulin Should I Use?
pp.:
168 – 173
IV. Generation and Evaluation of New RFPs in Fission Yeast
pp.:
173 – 179
III. Searching for the “GFP” of RFPs
pp.:
173 – 173
V. The Hunt for Red Tubulin
pp.:
179 – 185
VI. Successful Fluorescent Imaging of Fission Yeast Microtubules andAssociated Proteins
pp.:
185 – 187
References
pp.:
187 – 192
10. Optical Trapping and Laser Ablation of Microtubules in Fission Yeast
pp.:
192 – 193
II. Optical Manipulation
pp.:
193 – 195
I. Introduction
pp.:
193 – 193
III. Optical Tweezing in Fission Yeast
pp.:
195 – 197
IV. Laser Ablation of Microtubules
pp.:
197 – 200
V. Methods
pp.:
200 – 201
References
pp.:
201 – 204
11. A Fast Microfluidic Temperature Control Device for Studying MicrotubuleDynamics in Fission Yeast
pp.:
204 – 205
I. Introduction
pp.:
205 – 206
II. Device and Setup Presentation
pp.:
206 – 207
III. Mold and Device Fabrication
pp.:
207 – 213
IV. Setup Installation
pp.:
213 – 215
V. Biological Experiments
pp.:
215 – 219
VII. Materials
pp.:
219 – 220
VI. Conclusion
pp.:
219 – 219
References
pp.:
220 – 222
12. Microtubule-Dependent Spatial Organization of Mitochondria in Fission Yeast
pp.:
222 – 223
I. Introduction
pp.:
223 – 225
II. Visualization of Mitochondria in Fission Yeast
pp.:
225 – 233
III. Functional Analysis of MT–Mitochondria Interactionin Live Cells
pp.:
233 – 234
IV. Purification and Subfractionation of Fission YeastMitochondria
pp.:
234 – 238
References
pp.:
238 – 242
13. Microscopy Methods for the Study of Centriole Biogenesis and Functionin Drosophila
pp.:
242 – 243
I. Introduction
pp.:
243 – 245
II. Centrioles in Drosophila Early Embryogenesis
pp.:
245 – 252
III. Centrioles in Drosophila Spermatogenesis
pp.:
252 – 259
References
pp.:
259 – 262
14. Drosophila S2 Cells as a Model System to Investigate Mitotic Spindle Dynamics,Architecture, and Function
pp.:
262 – 263
I. Introduction
pp.:
263 – 265
II. Methods
pp.:
265 – 273
References
pp.:
273 – 278
15. Assessment of Mitotic Spindle Phenotypes in Drosophila S2 Cells
pp.:
278 – 279
I. Introduction
pp.:
279 – 280
II. Rationale
pp.:
280 – 281
III. Material Check
pp.:
281 – 283
IV. RNAi and Cell Imaging
pp.:
283 – 286
V. Typical Phenotypes
pp.:
286 – 290
VI. How to Avoid Recording False Positives
pp.:
290 – 292
VII. Summary
pp.:
292 – 293
References
pp.:
293 – 296
I. Introduction
pp.:
296 – 299
16. Analysis of Microtubules in Budding Yeast
pp.:
296 – 296
II. The Cellular Toolbox for Analysis of Microtubulesin Budding Yeast
pp.:
299 – 306
III. Microscopy and Data Collection
pp.:
306 – 311
IV. Methods of Analysis
pp.:
311 – 317
References
pp.:
317 – 326
17. Imaging and Analysis of the Microtubule Cytoskeleton in Giardia
pp.:
326 – 327
II. Structural Elements of the Giardial MT Cytoskeleton
pp.:
327 – 336
I. Introduction
pp.:
327 – 327
III. Culture and Molecular Genetic Techniques
pp.:
336 – 344
IV. Imaging of the Cytoskeleton and Associated Proteins Using LightMicroscopy
pp.:
344 – 351
V. EM of Trophozoites and Cysts
pp.:
351 – 352
VI. Other Cytoskeletal Methods
pp.:
352 – 353
VII. Perspectives
pp.:
353 – 355
References
pp.:
355 – 360
18. Live Cell-Imaging Techniques for Analyses of Microtubulesin Dictyostelium
pp.:
360 – 361
I. Introduction
pp.:
361 – 364
III. Specimen Preparation for Live Cell Imaging of Dictyostelium Amoebae
pp.:
364 – 366
II. Rationale
pp.:
364 – 364
IV. Setup and Settings for Live Cell Fluorescence Microscopyof Dictyostelium Microtubules
pp.:
366 – 371
V. Analysis of Microtubule Dynamics by FRAP
pp.:
371 – 375
References
pp.:
375 – 378
19. Imaging of Mitotic Spindle Dynamics in Caenorhabditis elegans Embryos
pp.:
378 – 379
I. Introduction
pp.:
379 – 380
II. Immunofluorescence Staining for Microtubule Observationin C. elegans Embryos
pp.:
380 – 382
III. Live Imaging of Fluorescent-Tagged Proteins inC. elegans Embryos
pp.:
382 – 390
IV. Summary
pp.:
390 – 391
References
pp.:
391 – 392
20. Microtubule Dynamics in Plant Cells
pp.:
392 – 393
I. Introduction
pp.:
393 – 394
III. Methods
pp.:
394 – 411
II. Rationale
pp.:
394 – 394
IV. Materials
pp.:
411 – 414
V. Outlook
pp.:
414 – 415
References
pp.:
415 – 420
21. Melanophores for Microtubule Dynamics and Motility Assays
pp.:
420 – 421
I. Introduction
pp.:
421 – 422
II. Experimental Procedures
pp.:
422 – 429
III. Discussion
pp.:
429 – 432
References
pp.:
432 – 434
22. Imaging Cilia in Zebrafish
pp.:
434 – 435
I. Introduction
pp.:
435 – 436
II. Methods
pp.:
436 – 453
References
pp.:
453 – 456
III. Conclusions
pp.:
453 – 453
23. Modeling Microtubule-Mediated Forces and Centrosome Positioningin Caenorhabditis elegans Embryos
pp.:
456 – 457
I. Introduction
pp.:
457 – 458
II. Rationale
pp.:
458 – 462
III. Methods
pp.:
462 – 469
IV. Discussion
pp.:
469 – 469
V. Summary
pp.:
469 – 470
References
pp.:
470 – 474
24. Cryo-Electron Tomography of Cellular Microtubules
pp.:
474 – 475
I. Introduction
pp.:
475 – 478
III. Materials and Methods
pp.:
478 – 489
II. Rationale
pp.:
478 – 478
IV. Summary and Outlook
pp.:
489 – 490
References
pp.:
490 – 494
25. Automated Identification of Microtubules in Cellular Electron Tomography
pp.:
494 – 495
I. Introduction
pp.:
495 – 496
II. Overview
pp.:
496 – 497
III. Preprocessing: Finding Points in Microtubules
pp.:
497 – 504
IV. Tracking: Connecting Points into Lines
pp.:
504 – 512
V. Validation and Future Work
pp.:
512 – 514
References
pp.:
514 – 516
26. Quality Control in Single-Molecule Studies of Kinesins andMicrotubule-Associated Proteins
pp.:
516 – 517
I. Introduction
pp.:
517 – 518
II. Problems in Single-Molecule Detection
pp.:
518 – 520
III. Quality Control Steps
pp.:
520 – 524
IV. Summary
pp.:
524 – 525
References
pp.:
525 – 526
Subject Index
pp.:
526 – 542
Volumes in Series
pp.:
542 – 550