Chapter
Chapter II. The Inner Product
pp.:
62 – 85
Chapter III. Eigenvalues and Eigenvectors
pp.:
85 – 116
Chapter IV. Hermitian, Unitary, and Normal Matrices
pp.:
116 – 134
Chapter V. Change of Basis, Diagonalization, and the Jordan Canonical Form
pp.:
134 – 166
Chapter VI. Functions of a Matrix
pp.:
166 – 191
Chapter VII. The Matricant
pp.:
191 – 212
Chapter VIII. Decomposition Theorems and the Jordan Canonical Form
pp.:
212 – 234
Chapter IX. The Improper Inner Product
pp.:
234 – 258
Chapter X. The Dyad Expansion and Its Application
pp.:
258 – 277
Chapter XI. Projectors
pp.:
277 – 298
Chapter XII. Singular and Rectangular Operators
pp.:
298 – 312
Chapter XIII. The Commutator Operator
pp.:
312 – 340
Chapter XIV. The Direct Product and the Kronecker Sum
pp.:
340 – 354
Chapter XV. Periodic Systems
pp.:
354 – 367
Chapter XVI. Application to Electromagnetic Theory
pp.:
367 – 378
Chapter XVII. Sturm-Liouville Systems
pp.:
378 – 390
Chapter XVIII. Markoff Matrices and Probability Theory
pp.:
390 – 402
Chapter XIX. Stability
pp.:
402 – 415
References and Recommended Texts
pp.:
415 – 420
Subject Index
pp.:
420 – 426