Introduction to Interval Computation

Author: Alefeld   Gotz;Herzberger   Jurgen  

Publisher: Elsevier Science‎

Publication year: 2012

E-ISBN: 9780080916361

P-ISBN(Paperback): 9780120498208

P-ISBN(Hardback):  9780120498208

Subject: O241.86 practical harmonic analysis

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

This book is revised and expanded version of the original German text. The arrangement of the material and the structure are essentially unchanged. All remarks in the Preface to the German Edition regarding naming conventions for formulas, theorems, lemmas, and definitions are still valid as are those concerning the arrangement and choice of material.

Chapter

Front Cover

pp.:  1 – 4

Copyright Page

pp.:  5 – 8

Dedication

pp.:  6 – 12

Table of Contents

pp.:  8 – 6

Preface to The English Edition

pp.:  12 – 14

Preface to The German Edition

pp.:  14 – 20

Chapter 1. Real Interval Arithmetic

pp.:  20 – 29

Chapter 2. Further Concepts and Properties

pp.:  29 – 39

Chapter 3. Interval Evaluation and Range of Real Functions

pp.:  39 – 58

Chapter 4. Machine Interval Arithmetic

pp.:  58 – 69

Chapter 5. Complex Interval Arithmetic

pp.:  69 – 78

Chapter 6. Metric, Absolute Value, and Width in I(¢)

pp.:  78 – 86

Chapter 7. Inclusion of Zeros of a Function of One Real Variable

pp.:  86 – 120

Chapter 8. Methods for the Simultaneous Inclusion of Real Zeros of Polynomials

pp.:  120 – 132

Chapter 9. Methods for the Simultaneous Inclusion of Complex Zeros of Polynomials

pp.:  132 – 139

Chapter 10. Interval Matrix Operations

pp.:  139 – 150

Chapter 11. Fixed Point Iteration for Nonlinear Systems of Equations

pp.:  150 – 162

Chapter 12. Systems of Linear Equations Amenable to Iteration

pp.:  162 – 179

Chapter 13. Relaxation Methods

pp.:  179 – 186

Chapter 14. Optimality of the Symmetric Single Step Method with Taking Intersection after Every Component

pp.:  186 – 198

Chapter 15. On the Feasibility of the Gaussian Algorithm for Systems of Equations with Intervals as Coefficients

pp.:  198 – 211

Chapter 16. Hansen's Method

pp.:  211 – 219

Chapter 17. The Procedure of Kupermann and Hansen

pp.:  219 – 223

Chapter 18. Iteration Methods for the Inclusion of the Inverse Matrix and for Triangular Decompositions

pp.:  223 – 241

Chapter 19. Newton-like Methods for Nonlinear Systems of Equations

pp.:  241 – 274

Chapter 20. Newton-like Methods without Matrix Inversions

pp.:  274 – 280

Chapter 21. Newton-like Methods for Particular Systems of Nonlinear Equations

pp.:  280 – 293

Chapter 22. Newton-like Total Step and Single Step Methods

pp.:  293 – 302

Appendix A: The Order of Convergence of Iteration Methodsin Vn(I(¢) and Mmn(I /¢))

pp.:  302 – 307

Appendix B: Realizations of Machine Interval Arithmetics in ALGOL 60

pp.:  307 – 315

Appendix C: ALGOL Procedures

pp.:  315 – 328

Bibliography

pp.:  328 – 348

Index of Notation

pp.:  348 – 350

Subject Index

pp.:  350 – 353

The users who browse this book also browse


No browse record.