Linear Lie Groups ( Volume 35 )

Publication series :Volume 35

Author: Freudenthal   Hans;Vries   H. de.  

Publisher: Elsevier Science‎

Publication year: 2011

E-ISBN: 9780080873473

P-ISBN(Paperback): 9780123745743

P-ISBN(Hardback):  9780123745743

Subject: O152.5 Lie group

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Linear Lie Groups

Chapter

Front Cover

pp.:  1 – 4

Linear Lie Groups, Volume 35

pp.:  4 – 5

Copyright Page

pp.:  5 – 6

Contents

pp.:  6 – 16

0. Introduction

pp.:  16 – 16

0.0 Preface

pp.:  16 – 18

Chapter 1-5. Preliminaries

pp.:  26 – 48

Chapter 6-12. The Connection between Local Linear Lie Groups and Lie Algebras

pp.:  48 – 88

Chapter 13-19. Solvability and Semisimplicity

pp.:  88 – 124

Chapter 20-27. Dressings and Classification of Semisimple Complex Lie Algebras

pp.:  124 – 167

Chapter 28-38. Topological and Integration Methods

pp.:  167 – 232

Chapter 39-50. The Algebraic Approach to Linear Representations

pp.:  232 – 290

Chapter 51-62. Reality in Lie Groups and Algebras and Their Linear Representations

pp.:  290 – 374

Chapter 63-67. Symmetric Spaces

pp.:  374 – 420

Chapter 68-75. Tits Geometries

pp.:  420 – 522

Chapter 76-77. Betti Numbers of Semisimple Lie Groups and Regular Subalgebras of Semisimple Lie Algebras

pp.:  522 – 552

Appendix

pp.:  552 – 564

Key to Definitions

pp.:  564 – 572

Author Index

pp.:  572 – 573

Pure and Applied Mathematics

pp.:  573 – 576

The users who browse this book also browse


No browse record.