Chapter
Chapter 2. On nonlinear integrals
pp.:
70 – 76
Chapter 3. The controlled convergence theorem for the approximately continuous integral of Burkill
pp.:
76 – 82
Chapter 4. Harmonic analysis on classical groups
pp.:
82 – 128
Chapter 5. Interpolation of operators in Lebesgue spaces with mixed norm and its applications to Fourier analysis
pp.:
128 – 142
Chapter 6. Shift invariant Markov measures and the entropy map of the shift
pp.:
142 – 164
Chapter 7. Translation invariant operators and multipliers of Banach-valued function spaces
pp.:
164 – 176
Chapter 8. A proof of the generalized dominated convergence theorem for the Denjoy integral
pp.:
176 – 180
Chapter 9. A factorization theorem for the real Hardy spaces
pp.:
180 – 190
Chapter 10. Estimates for pseudo-differential operators of class Smρ,δ in Lp , hp , and bmo.
pp.:
190 – 202
Chapter 11. A note on a lifting property for convex processes
pp.:
202 – 204
Chapter 12. Weak Lp-spaces and weighted norm inequalities for the Fourier transform on locally compact Vilenkin groups
pp.:
204 – 216
Chapter 13. Multipiers of Segal algebras
pp.:
216 – 232
Chapter 14. Differentiation in Banach spaces
pp.:
232 – 256
Chapter 15. “Spectral subsets” of IRm associated with commuting families of linear operators
pp.:
256 – 262
Chapter 16. The class of Möbius transformations of convex mappings
pp.:
262 – 274
Chapter 17. Uniform ergodic theorems for operator semigroups
pp.:
274 – 280
Chapter 18. Weighted norm inequalities for some maximal functions
pp.:
280 – 298
Chapter 19. The second duals of the nonabsolute Cesaro sequence spaces
pp.:
298 – 304
Chapter 20. Banach reducibility of decomposable operators
pp.:
304 – 308
Chapter 21. There can be no Lipschitz version of Michael's selection theorem
pp.:
308 – 314
Chapter 22. A new smoothness of Banach spaces
pp.:
314 – 318