Cycles in Graphs ( Volume 27 )

Publication series :Volume 27

Author: Alspach   B. R.;Godsil   C. D.  

Publisher: Elsevier Science‎

Publication year: 1985

E-ISBN: 9780080872261

P-ISBN(Paperback): 9780444878038

P-ISBN(Hardback):  9780444878038

Subject: O157.5 Graph

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

This volume deals with a variety of problems involving cycles in graphs and circuits in digraphs. Leading researchers in this area present here 3 survey papers and 42 papers containing new results. There is also a collection of unsolved problems.

Chapter

Front Cover

pp.:  1 – 4

Cycle in Graphs

pp.:  4 – 5

Copyright Page

pp.:  5 – 8

Foreword

pp.:  6 – 12

Table of Contents

pp.:  8 – 6

Chapter 3. Hamilton Cycles in Metacirculant Graphs with Prime Cardinality Blocks

pp.:  38 – 46

Chapter 4. Hamilton Paths in Cartesian Products of Directed Cycles

pp.:  46 – 86

Chapter 5. Every Connected Cayley Graph of a Group with Prime Order Commutator Group Has a Hamilton Cycle

pp.:  86 – 92

Chapter 6. Multiple-Ply Hamiltonian Graphs and Digraphs

pp.:  92 – 100

Chapter 7. On Hamilton Cycles in Cayley Graphs in Groups with Cyclic Commutator Subgroup

pp.:  100 – 114

Chapter 8. Hamilton Circuits in Cartesian Products with a Metacyclic Factor

pp.:  114 – 126

Chapter 9. Vertex Transitive Graphs and Digraphs of Order pk

pp.:  126 – 140

Chapter 10. Some Hamiltonian Cayley Graphs

pp.:  140 – 152

Chapter 11. On Hamilton Cycles in 3-Connected Cubic Maps

pp.:  152 – 162

Chapter 12. Non-Hamiltonian 3-Polytopes Whose Faces Are All Pentagons

pp.:  162 – 170

Chapter 13. Hamilton Circuits in Regular Tournaments

pp.:  170 – 174

Chapter 14. Circuits and Hamilton Circuits in Domination Orientable Tournaments

pp.:  174 – 184

Chapter 15. First Occurrence of Hamilton Cycles in Random Graphs

pp.:  184 – 190

Chapter 16. The Pancyclicity of Halin Graphs and their Exterior Contractions

pp.:  190 – 206

Chapter 17. Long Paths between Specified Vertices of a Block

pp.:  206 – 212

Chapter 18. Longest Cycles in 2-Connected Graphs of Independence Number α

pp.:  212 – 216

Chapter 19. A Note on Maximal Cycles in 2-Connected Graphs

pp.:  216 – 220

Chapter 20. A Note on Isomorphic Generalized Prisms

pp.:  220 – 226

Chapter 21. Uniformly n-Cyclic Graphs

pp.:  226 – 230

Chapter 22. Cycles in 3-Connected Cubic Planar Graphs

pp.:  230 – 238

Chapter 23. A Lemma on Cycle Decompositions

pp.:  238 – 244

Chapter 24. A Note on Hamilton Cycles

pp.:  244 – 246

Chapter 25. A Counterexample to a Conjecture about Oriented Graphs

pp.:  246 – 248

Chapter 26. An Improvement of Jackson's Result on Hamilton Cycles in 2-Connected Regular Graphs

pp.:  248 – 260

Chapter 27. Finding Cycles of a Given Length

pp.:  260 – 268

Chapter 28. Clique Coverings of Complements of Paths and Cycles

pp.:  268 – 280

Chapter 29. Equicardinal Disjoint Cycles in Sparse Graphs

pp.:  280 – 286

Chapter 30. Path and Cycle Decompositions of Complete Multigraphs

pp.:  286 – 298

Chapter 31. Minimum Number of Circuits Covering the Vertices of a Strong Digraph

pp.:  298 – 308

Chapter 32. On Decomposing Graphs into Isomorphic Uniform 2-Factors

pp.:  308 – 332

Chapter 33. Two Complementary Circuits in Two-Connected Tournaments

pp.:  332 – 346

Chapter 34. The Clique Partition Number of the Complement of a Cycle

pp.:  346 – 356

Chapter 35. The Computational Complexity of Decomposing Block Designs

pp.:  356 – 362

Chapter 36. Kotzig's Conjecture on Generalized Friendship Graphs - A Survey

pp.:  362 – 378

Chapter 37. A Short Proof of Rubin's Block Theorem

pp.:  378 – 380

Chapter 38. Cycle Basis Interpolation Theorems

pp.:  380 – 392

Chapter 39. A Basis for the Cycle Space of a 3-Connected Graph

pp.:  392 – 410

Chapter 40. Types of Cycles in Hypergraphs

pp.:  410 – 430

Chapter 41. Parity of Cycles Containing Specified Edges

pp.:  430 – 444

Chapter 42. An Optimal Algorithm for Directing Triple Systems Using Eulerian Circuits

pp.:  444 – 450

Chapter 43. The Reconstruction Conjecture for Balanced Signed Graphs

pp.:  450 – 454

Chapter 44. Periodic Points of Small Periods of Continuous Mappings of Trees

pp.:  454 – 458

Chapter 45. Periodic Points of Continuous Mappings of Trees

pp.:  458 – 472

Chapter 46. Unsolved Problems

pp.:  472 – 484

The users who browse this book also browse