Recent Progress in Fourier Analysis ( Volume 111 )

Publication series :Volume 111

Author: Peral   I.;Francia†   J. L. Rubio de  

Publisher: Elsevier Science‎

Publication year: 1985

E-ISBN: 9780080872223

P-ISBN(Paperback): 9780444877451

P-ISBN(Hardback):  9780444877451

Subject: O241 数值分析

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Recent Progress in Fourier Analysis

Chapter

Front Cover

pp.:  1 – 4

Copyright Page

pp.:  5 – 8

Contents

pp.:  8 – 10

Chapter 2. On Problems Related to Theorems A and B with Estimates

pp.:  20 – 30

Chapter 3. The Dual of the Bergman Space A1 in the Tube over the Spherical Cone

pp.:  30 – 40

Chapter 4. Boundary Value Problems for the Laplace Equation in Lipschitzian Domains

pp.:  40 – 56

Chapter 5. Radial Fourier Multipliers and Associated Maximal Functions

pp.:  56 – 64

Chapter 6. Restriction Lemmas, Spherical Summation, Maximal Functions, Square Functions and all that

pp.:  64 – 72

Chapter 7. Ensembles Aleatoireset Dimensions

pp.:  72 – 130

Chapter 8. Kato's Square Roots of Accretive Operators and Cauchy Kernels on Lipschitz Curves are the same

pp.:  130 – 152

Chapter 9. Continuité sur les Espaces de Hölder et de Sobolev des Opèrateurs Dèfinis para des Intègrales singuligrès

pp.:  152 – 180

Chapter 10. Analytic Families of Banach Spaces and Some of Their Uses

pp.:  180 – 210

Chapter 11. Some Maximal Inequalities

pp.:  210 – 222

Chapter 12. A Fatou Theorem and a Maximal Function not Invariant under Translation

pp.:  222 – 228

Chapter 13. A Counter-Example for the Disc Multiplier

pp.:  228 – 236

Chapter 14. Three Variations on the Theme of Maximal Functions

pp.:  236 – 252

Chapter 15. Estimates for Finite Expansions of Gegenbauer and Jacobi Polynomials

pp.:  252 – 262

Chapter 16. Balls Defined by Vector Fields

pp.:  262 – 276