Functional Analysis, Holomorphy and Approximation Theory ( Volume 71 )

Publication series :Volume 71

Author: Barroso   J. A.  

Publisher: Elsevier Science‎

Publication year: 2011

E-ISBN: 9780080871820

P-ISBN(Paperback): 9780444865274

P-ISBN(Hardback):  9780444865274

Subject: O177 functional analysis

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Functional Analysis, Holomorphy and Approximation Theory

Chapter

Front Cover

pp.:  1 – 4

Copyright Page

pp.:  5 – 8

Table of Contents

pp.:  8 – 10

Chapter 2. Köthe Sets and Köthe Sequence Spaces

pp.:  36 – 102

Chapter 3. Parametric Approximation and Optimization

pp.:  102 – 126

Chapter 4. Maximal Convolution Operators and Approximations

pp.:  126 – 140

Chapter 5. Convolution Equations in Infinite Dimensions: Brief Survey, New Results and Proofs

pp.:  140 – 188

Chapter 6. Holomorphic and Differentiable Mappings of Uniform Bounded Type

pp.:  188 – 210

Chapter 7. Finite-Difference Partial Differential Equations in Normed and Locally Convex Spaces

pp.:  210 – 224

Chapter 8. Approximation Properties in Nuclear Fréchet Spaces

pp.:  224 – 244

Chapter 9. Geometry of the Neighbourhood of a Singularity

pp.:  244 – 264

Chapter 10. A Class of Fréchet Complex Spaces in Which the Bounded Sets are C-Polar Sets

pp.:  264 – 282

Chapter 11. An Interpretation of Tω and Tσ as Normal Topologies of Sequence Spaces

pp.:  282 – 296

Chapter 12. Well Located Subspaces of LF-Spaces

pp.:  296 – 308

Chapter 13. Continuation Theory for A-Proper and Strongly A-Closed Mappings and Their Uniform Limits and Nonlinear Perturbations of Fredholm Mappings

pp.:  308 – 382

Chapter 14. New Examples of Nuclear Fréchet Spaces Without Bases

pp.:  382 – 388

Chapter 15. A Survey of Some Recent Results on the Inverse Spectral and Scattering Problems for Differential Operators

pp.:  388 – 400

Chapter 16. Various Applications of the Existence of Well Growing Holomorphic Functions

pp.:  400 – 422

Chapter 17. On the Stone-Weierstrass Theorem for Modules Over Non-Archimedean Valued Fields

pp.:  422 – 442

Chapter 18. Semi-Martingales and Measure Theory

pp.:  442 – 454

Chapter 19. On Semi-Suslin Spaces and Dual Metric Spaces

pp.:  454 – 470

Chapter 20. On the Approximation of Functions in Inductive Limits

pp.:  470 – 496

The users who browse this book also browse