Chapter
Table of Contents
pp.:
14 – 16
Chapter 1. Minimal Resolution
pp.:
16 – 18
Chapter 2. Sylow 2-Subgroups of Rank 3
pp.:
18 – 21
Chapter 3. The Extended ZJ - Theorem
pp.:
21 – 23
Chapter 4. Finite Groups Generated by Odd Transposition
pp.:
23 – 27
Chapter 5. Groups Generated by a Class of Elements of Order
pp.:
27 – 34
Chapter 6. Solvable Groups, Automorphism Groups, and Representation Theory
pp.:
34 – 40
Chapter 7. Groups Whose Sylow 2-Groups Have Cyclic Commutator Groups
pp.:
40 – 42
Chapter 8. A Construction for the Smallest Fischer Group F 22
pp.:
42 – 51
Chapter 9. Groups With a (B,N)-Pair of Rank 2
pp.:
51 – 56
Chapter 10. Characters of Symplectic Groups Over F2
pp.:
56 – 70
Chapter 11. Strongly Closed Abelian 2-Subgroups of Finite Groups
pp.:
70 – 72
Chapter 12. Finite Groups of Sectional 2-Rank At Most 4
pp.:
72 – 83
Chapter 13. Automorphisms of Extra Special Groups and Nonvanishing Degree 2 Cohomology
pp.:
83 – 89
Chapter 14. Characterizations of Some Finite Simple Chevalley Groups by Centralizers of Involution
pp.:
89 – 95
Chapter 15. Remark on Shult's Graph Extension Theorem
pp.:
95 – 99
Chapter 16. Simple Groups of Conjugate Type Rank ≤5
pp.:
99 – 113
Chapter 17. A Class of Simple Groups of Characteristic 2
pp.:
113 – 116
Chapter 18. 2-Groups Which Contain Exactly 'Three Involutions
pp.:
116 – 123
Chapter 19. On Solving the Degree Equations in π–Groups
pp.:
123 – 131
Chapter 20. On Finite Linear Groups of Degree Less Than ( q - 1 ) /2
pp.:
131 – 132
Chapter 21. A Setting for the Leech Lattice
pp.:
132 – 134
Chapter 22. The Normal Structure of' the One–Point Stabilizer of a Doubly Transitive Group
pp.:
134 – 137
Chapter 23. Flag–Transitive Subgroups of Chevalley Groups
pp.:
137 – 141
Chapter 24. Corollaries of Strongly Embedded Type from a A Theorem of Aschbacher
pp.:
141 – 146
Chapter 25. On Fusion in 2–Sylow Intersections
pp.:
146 – 153
Chapter 26. The Existence and Uniqueness of Lyons' Group
pp.:
153 – 157
Chapter 27. Isometries in Finite Groups of Lie Type
pp.:
157 – 162
Chapter 28. Centralizers of Involutions and the Classification Problem
pp.:
162 – 171
Chapter 29. A Characterization of Orthogonal Simple Groups PΩ(2n,q)
pp.:
171 – 174