Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity ( Volume 51 )

Publication series :Volume 51

Author: Nešetril   J.;Fiedler   M.  

Publisher: Elsevier Science‎

Publication year: 1992

E-ISBN: 9780080867915

P-ISBN(Paperback): 9780444895431

P-ISBN(Hardback):  9780444895431

Subject: O158 Discrete Mathematics;TP3 Computers

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

This volume in the Annals of Discrete Mathematics brings together contributions by renowned researchers in combinatorics, graphs and complexity. The conference on which this book is based was the fourth in a series which began in 1963, which was the first time specialists from East and West were able to come together. The 1990 meeting attracted 170 mathematicians and computer scientists from around the world, so this book represents an international, detailed view of recent research.

Chapter

Front Cover

pp.:  1 – 4

Copyright Page

pp.:  5 – 8

Preface

pp.:  6 – 12

Contents

pp.:  8 – 6

Chapter 3. On Magic Labellings of Convex Polytopes

pp.:  24 – 28

Chapter 4. A Packing Problem and Geometrical Series

pp.:  28 – 34

Chapter 5. On the Bananas Surface B2

pp.:  34 – 42

Chapter 6. Structural Properties and Colorings of Plane Graphs

pp.:  42 – 50

Chapter 7. The Binding Number of Graphs

pp.:  50 – 56

Chapter 8. Note on Algorithmic Solvability of Trahtenbrot-Zykov Problem

pp.:  56 – 62

Chapter 9. Cartesian Dimensions of a Graph

pp.:  62 – 70

Chapter 10. The Steiner Minimal Tree Problem in L2p

pp.:  70 – 74

Chapter 11. On k-Connected Subgraphs of the Hypercube

pp.:  74 – 80

Chapter 12. On Some of My Favourite Problems in Various Branches of Combinatorics

pp.:  80 – 92

Chapter 13. Realizability of Some Starlike Trees

pp.:  92 – 96

Chapter 14. The Construction of All Configurations (124,163)

pp.:  96 – 104

Chapter 15. (p, q)-realizability of Integer Sequences with Respect to Möbius Strip

pp.:  104 – 114

Chapter 16. Vertex Location Problems

pp.:  114 – 118

Chapter 17. On Generation of a Class of Flowgraphs

pp.:  118 – 124

Chapter 18. The Weight of a Graph

pp.:  124 – 128

Chapter 19. On the Kauffman Polynomial of Planar Matroids

pp.:  128 – 140

Chapter 20. On Symmetry Groups of Selfdual Convex Polyhedra

pp.:  140 – 148

Chapter 21. A Remark on 2-(v,k,A) Designs

pp.:  148 – 152

Chapter 22. On a New Class of Intersection Graphs

pp.:  152 – 156

Chapter 23. Asymptotic Normality of Isolated Edges in Random Subgraphs of the n-Cube

pp.:  156 – 162

Chapter 24. On Bounds of the Bisection Width of Cubic Graphs

pp.:  162 – 166

Chapter 25. On Random Cubical Graphs

pp.:  166 – 172

Chapter 26. On the Computational Complexity of Seidel’s Switching

pp.:  172 – 178

Chapter 27. The Harmonious Chromatic Number of a Graph

pp.:  178 – 182

Chapter 28. Arboricity and Star Arboricity of Graphs

pp.:  182 – 186

Chapter 29. Extended 4-Profiles of Hadamard Matrices

pp.:  186 – 192

Chapter 30. Good Family Packing

pp.:  192 – 198

Chapter 31. Solution of an Extremal Problem Concerning Edge-Partitions of Graphs

pp.:  198 – 202

Chapter 32. Balanced Extensions of Spare Graphs

pp.:  202 – 216

Chapter 33. Two Results on Antisocial Families of Balls

pp.:  216 – 220

Chapter 34. Hamiltonicity of Vertex-transitive pq-Graphs

pp.:  220 – 224

Chapter 35. On Nodes of Given Out-Degree in Random Trees

pp.:  224 – 234

Chapter 36. All Leaves and Excesses Are Realizable for k = 3 and All A

pp.:  234 – 240

Chapter 37. The Binding Number of k-Trees

pp.:  240 – 246

Chapter 38. An Extension of Brook’s Theorem

pp.:  246 – 248

Chapter 39. On Sectors in a Connected Graph

pp.:  248 – 252

Chapter 40. lrreconstructability of Finite Undirected Graphs from Large Subgraphs

pp.:  252 – 256

Chapter 41. On Inefficient Proofs of Existence and Complexity Classes

pp.:  256 – 262

Chapter 42. Optimal Coteries on a Network

pp.:  262 – 266

Chapter 43. On Some Heuristics for the Steiner Problem in Graphs

pp.:  266 – 270

Chapter 44. Cycle Covers of Graphs with a Nowhere-Zero 4-Flow (Abstract)

pp.:  270 – 272

Chapter 45. Minimax Results and Polynomial Algorithms in VLSl Routing

pp.:  272 – 286

Chapter 46. Critical Perfect Systems of Difference Sets

pp.:  286 – 292

Chapter 47. Some Operations (Not) Preserving the Integer Rounding Property

pp.:  292 – 298

Chapter 48. Optimal Embedding of a Tree into an Interval Graph in Linear Time

pp.:  298 – 304

Chapter 49. Construction of Polytopal Graphs

pp.:  304 – 308

Chapter 50. More About Two-Graphs

pp.:  308 – 320

Chapter 51. These are the Two-free Trees

pp.:  320 – 326

Chapter 52. A Note on Reconstructing the Characteristic Polynomial of a Graph

pp.:  326 – 332

Chapter 53. Exponential Constructions of Some Nonhamiltonian Minima

pp.:  332 – 340

Chapter 54. Hamiltonicity of Products of Hypergraphs

pp.:  340 – 344

Chapter 55. Non-Hamiltonian Simple 3-Polytopal Graphs with Edges of Only Two Types

pp.:  344 – 348

Chapter 56. On Spectra of Trees and Related Two-Graphs

pp.:  348 – 352

Chapter 57. Metrically Regular Square of Metrically Regular Bigraphs

pp.:  352 – 356

Chapter 58. Embedding of Graphs in the Complements of Their Squares

pp.:  356 – 362

Chapter 59. An 11/6-Approximation Algorithm for the Steiner Problem on Graphs

pp.:  362 – 366

Chapter 60. Distances Between Graphs (Extended Abstract)

pp.:  366 – 374

Chapter 61. Domatic Number of a Graph and its Variants (Extended Abstract)

pp.:  374 – 382

Chapter 62. The Space of Graphs and its Factorizations

pp.:  382 – 386

Chapter 63. Problems Proposed at the Problem Session of the Prachatice Conference on Graph Theory

pp.:  386 – 396

List of Participants

pp.:  396 – 400

Name Index

pp.:  400 – 408

Subject Index

pp.:  408 – 412

The users who browse this book also browse