Chapter
Chapter 3. On Magic Labellings of Convex Polytopes
pp.:
24 – 28
Chapter 4. A Packing Problem and Geometrical Series
pp.:
28 – 34
Chapter 5. On the Bananas Surface B2
pp.:
34 – 42
Chapter 6. Structural Properties and Colorings of Plane Graphs
pp.:
42 – 50
Chapter 7. The Binding Number of Graphs
pp.:
50 – 56
Chapter 8. Note on Algorithmic Solvability of Trahtenbrot-Zykov Problem
pp.:
56 – 62
Chapter 9. Cartesian Dimensions of a Graph
pp.:
62 – 70
Chapter 10. The Steiner Minimal Tree Problem in L2p
pp.:
70 – 74
Chapter 11. On k-Connected Subgraphs of the Hypercube
pp.:
74 – 80
Chapter 12. On Some of My Favourite Problems in Various Branches of Combinatorics
pp.:
80 – 92
Chapter 13. Realizability of Some Starlike Trees
pp.:
92 – 96
Chapter 14. The Construction of All Configurations (124,163)
pp.:
96 – 104
Chapter 15. (p, q)-realizability of Integer Sequences with Respect to Möbius Strip
pp.:
104 – 114
Chapter 16. Vertex Location Problems
pp.:
114 – 118
Chapter 17. On Generation of a Class of Flowgraphs
pp.:
118 – 124
Chapter 18. The Weight of a Graph
pp.:
124 – 128
Chapter 19. On the Kauffman Polynomial of Planar Matroids
pp.:
128 – 140
Chapter 20. On Symmetry Groups of Selfdual Convex Polyhedra
pp.:
140 – 148
Chapter 21. A Remark on 2-(v,k,A) Designs
pp.:
148 – 152
Chapter 22. On a New Class of Intersection Graphs
pp.:
152 – 156
Chapter 23. Asymptotic Normality of Isolated Edges in Random Subgraphs of the n-Cube
pp.:
156 – 162
Chapter 24. On Bounds of the Bisection Width of Cubic Graphs
pp.:
162 – 166
Chapter 25. On Random Cubical Graphs
pp.:
166 – 172
Chapter 26. On the Computational Complexity of Seidel’s Switching
pp.:
172 – 178
Chapter 27. The Harmonious Chromatic Number of a Graph
pp.:
178 – 182
Chapter 28. Arboricity and Star Arboricity of Graphs
pp.:
182 – 186
Chapter 29. Extended 4-Profiles of Hadamard Matrices
pp.:
186 – 192
Chapter 30. Good Family Packing
pp.:
192 – 198
Chapter 31. Solution of an Extremal Problem Concerning Edge-Partitions of Graphs
pp.:
198 – 202
Chapter 32. Balanced Extensions of Spare Graphs
pp.:
202 – 216
Chapter 33. Two Results on Antisocial Families of Balls
pp.:
216 – 220
Chapter 34. Hamiltonicity of Vertex-transitive pq-Graphs
pp.:
220 – 224
Chapter 35. On Nodes of Given Out-Degree in Random Trees
pp.:
224 – 234
Chapter 36. All Leaves and Excesses Are Realizable for k = 3 and All A
pp.:
234 – 240
Chapter 37. The Binding Number of k-Trees
pp.:
240 – 246
Chapter 38. An Extension of Brook’s Theorem
pp.:
246 – 248
Chapter 39. On Sectors in a Connected Graph
pp.:
248 – 252
Chapter 40. lrreconstructability of Finite Undirected Graphs from Large Subgraphs
pp.:
252 – 256
Chapter 41. On Inefficient Proofs of Existence and Complexity Classes
pp.:
256 – 262
Chapter 42. Optimal Coteries on a Network
pp.:
262 – 266
Chapter 43. On Some Heuristics for the Steiner Problem in Graphs
pp.:
266 – 270
Chapter 44. Cycle Covers of Graphs with a Nowhere-Zero 4-Flow (Abstract)
pp.:
270 – 272
Chapter 45. Minimax Results and Polynomial Algorithms in VLSl Routing
pp.:
272 – 286
Chapter 46. Critical Perfect Systems of Difference Sets
pp.:
286 – 292
Chapter 47. Some Operations (Not) Preserving the Integer Rounding Property
pp.:
292 – 298
Chapter 48. Optimal Embedding of a Tree into an Interval Graph in Linear Time
pp.:
298 – 304
Chapter 49. Construction of Polytopal Graphs
pp.:
304 – 308
Chapter 50. More About Two-Graphs
pp.:
308 – 320
Chapter 51. These are the Two-free Trees
pp.:
320 – 326
Chapter 52. A Note on Reconstructing the Characteristic Polynomial of a Graph
pp.:
326 – 332
Chapter 53. Exponential Constructions of Some Nonhamiltonian Minima
pp.:
332 – 340
Chapter 54. Hamiltonicity of Products of Hypergraphs
pp.:
340 – 344
Chapter 55. Non-Hamiltonian Simple 3-Polytopal Graphs with Edges of Only Two Types
pp.:
344 – 348
Chapter 56. On Spectra of Trees and Related Two-Graphs
pp.:
348 – 352
Chapter 57. Metrically Regular Square of Metrically Regular Bigraphs
pp.:
352 – 356
Chapter 58. Embedding of Graphs in the Complements of Their Squares
pp.:
356 – 362
Chapter 59. An 11/6-Approximation Algorithm for the Steiner Problem on Graphs
pp.:
362 – 366
Chapter 60. Distances Between Graphs (Extended Abstract)
pp.:
366 – 374
Chapter 61. Domatic Number of a Graph and its Variants (Extended Abstract)
pp.:
374 – 382
Chapter 62. The Space of Graphs and its Factorizations
pp.:
382 – 386
Chapter 63. Problems Proposed at the Problem Session of the Prachatice Conference on Graph Theory
pp.:
386 – 396
List of Participants
pp.:
396 – 400
Name Index
pp.:
400 – 408
Subject Index
pp.:
408 – 412