Graph Colouring and Variations ( Volume 39 )

Publication series :Volume 39

Author: Werra   D. de;Hertz   A.  

Publisher: Elsevier Science‎

Publication year: 1989

E-ISBN: 9780080867793

P-ISBN(Paperback): 9780444705334

P-ISBN(Hardback):  9780444705334

Subject: O189.11 topological space (topological space)

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Graph Colouring and Variations

Chapter

Front Cover

pp.:  1 – 4

Copyright Page

pp.:  5 – 6

Contents

pp.:  6 – 8

Foreword

pp.:  8 – 10

Chapter 2. A min-max relation for the partial q-colourings of a graph. Part II: Box perfection

pp.:  22 – 36

Chapter 3. On locally-perfect colorings

pp.:  36 – 40

Chapter 4. The subchromatic number of a graph

pp.:  40 – 58

Chapter 5. Connected sequential colorings

pp.:  58 – 68

Chapter 6. Two conjectures on edge-colouring

pp.:  68 – 72

Chapter 7. A new upper bound for the list chromatic number

pp.:  72 – 84

Chapter 8. A note on perfect orders

pp.:  84 – 92

Chapter 9. On the Penrose number of cubic diagrams

pp.:  92 – 106

Chapter 10. On the edge achromatic numbers of complete graphs

pp.:  106 – 124

Chapter 11. Applications of edge coloring of multigraphs to vertex coloring of graphs

pp.:  124 – 132

Chapter 12. Interval vertex-coloring of a graph with forbidden colors

pp.:  132 – 144

Chapter 13. Hadwiger's conjecture (k = 6): Neighbour configurations of 6-vertices in contraction-critical graphs

pp.:  144 – 156

Chapter 14. About colorings, stability and paths in directed graphs

pp.:  156 – 158

Chapter 15. On the harmonious chromatic number of a graph

pp.:  158 – 166

Chapter 16. Weak bipolarizable graphs

pp.:  166 – 180

Chapter 17. P4-comparability graphs

pp.:  180 – 208

Chapter 18. On constructive methods in the theory of colour-critical graphs

pp.:  208 – 234

Chapter 19. Chromatic partitions of a graph

pp.:  234 – 248

Chapter 20. Sequential coloring versus Welsh–Powell bound

pp.:  248 – 252

Chapter 21. A generalization of Robacker's theorem

pp.:  252 – 260

Chapter 22. A randomised 3-colouring algorithm

pp.:  260 – 270

The users who browse this book also browse


No browse record.