Chapter
Chapter 2. A min-max relation for the partial q-colourings of a graph. Part II: Box perfection
pp.:
22 – 36
Chapter 3. On locally-perfect colorings
pp.:
36 – 40
Chapter 4. The subchromatic number of a graph
pp.:
40 – 58
Chapter 5. Connected sequential colorings
pp.:
58 – 68
Chapter 6. Two conjectures on edge-colouring
pp.:
68 – 72
Chapter 7. A new upper bound for the list chromatic number
pp.:
72 – 84
Chapter 8. A note on perfect orders
pp.:
84 – 92
Chapter 9. On the Penrose number of cubic diagrams
pp.:
92 – 106
Chapter 10. On the edge achromatic numbers of complete graphs
pp.:
106 – 124
Chapter 11. Applications of edge coloring of multigraphs to vertex coloring of graphs
pp.:
124 – 132
Chapter 12. Interval vertex-coloring of a graph with forbidden colors
pp.:
132 – 144
Chapter 13. Hadwiger's conjecture (k = 6): Neighbour configurations of 6-vertices in contraction-critical graphs
pp.:
144 – 156
Chapter 14. About colorings, stability and paths in directed graphs
pp.:
156 – 158
Chapter 15. On the harmonious chromatic number of a graph
pp.:
158 – 166
Chapter 16. Weak bipolarizable graphs
pp.:
166 – 180
Chapter 17. P4-comparability graphs
pp.:
180 – 208
Chapter 18. On constructive methods in the theory of colour-critical graphs
pp.:
208 – 234
Chapter 19. Chromatic partitions of a graph
pp.:
234 – 248
Chapter 20. Sequential coloring versus Welsh–Powell bound
pp.:
248 – 252
Chapter 21. A generalization of Robacker's theorem
pp.:
252 – 260
Chapter 22. A randomised 3-colouring algorithm
pp.:
260 – 270