Handbook of Mathematical Formulas and Integrals ( 4 )

Publication series :4

Author: Jeffrey   Alan;Dai   Hui Hui  

Publisher: Elsevier Science‎

Publication year: 2008

E-ISBN: 9780080556840

P-ISBN(Paperback): 9780123742889

P-ISBN(Hardback):  9780123742889

Subject: O241 数值分析

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

The extensive additions, and the inclusion of a new chapter, has made this classic work by Jeffrey, now joined by co-author Dr. H.H. Dai, an even more essential reference for researchers and students in applied mathematics, engineering, and physics. It provides quick access to important formulas, relationships between functions, and mathematical techniques that range from matrix theory and integrals of commonly occurring functions to vector calculus, ordinary and partial differential equations, special functions, Fourier series, orthogonal polynomials, and Laplace and Fourier transforms. During the preparation of this edition full advantage was taken of the recently updated seventh edition of Gradshteyn and Ryzhik’s Table of Integrals, Series, and Products and other important reference works. Suggestions from users of the third edition of the Handbook have resulted in the expansion of many sections, and because of the relevance to boundary value problems for the Laplace equation in the plane, a new chapter on conformal mapping, has been added, complete with an atlas of useful mappings.

  • Comprehensive coverage in reference form of the branches of mathematics used in science and engineering
  • Organized to make results involving integrals and functions easy to locate
  • Results illustrated by worked examples

Chapter

Front Cover

pp.:  1 – 4

Copyright Page

pp.:  5 – 6

Table of Contents

pp.:  6 – 20

Preface

pp.:  20 – 22

Preface to the Fourth Edition

pp.:  22 – 24

Notes for Handbook Users

pp.:  24 – 44

Index of Special Functions and Notations

pp.:  44 – 48

Chapter 0. Quick Reference List of Frequently Used Data

pp.:  48 – 74

Chapter 1. Numerical, Algebraic, and Analytical Results for Series and Calculus

pp.:  74 – 156

Chapter 2. Functions and Identities

pp.:  156 – 196

Chapter 3. Derivatives of Elementary Functions

pp.:  196 – 200

Chapter 4. Indefinite Integrals of Algebraic Functions

pp.:  200 – 222

Chapter 5. Indefinite Integrals of Exponential Functions

pp.:  222 – 228

Chapter 6. Indefinite Integrals of Logarithmic Functions

pp.:  228 – 236

Chapter 7. Indefinite Integrals of Hyperbolic Functions

pp.:  236 – 248

Chapter 8. Indefinite Integrals Involving Inverse Hyperbolic Functions

pp.:  248 – 254

Chapter 9. Indefinite Integrals of Trigonometric Functions

pp.:  254 – 272

Chapter 10. Indefinite Integrals of Inverse Trigonometric Functions

pp.:  272 – 278

Chapter 11. The Gamma, Beta, Pi, and Psi Functions, and the Incomplete Gamma Functions

pp.:  278 – 288

Chapter 12. Elliptic Integrals and Functions

pp.:  288 – 300

Chapter 13. Probability Distributions and Integrals, and the Error Function

pp.:  300 – 308

Chapter 14. Fresnel Integrals, Sine and Cosine Integrals

pp.:  308 – 312

Chapter 15. Definite Integrals

pp.:  312 – 322

Chapter 16. Different Forms of Fourier Series

pp.:  322 – 336

Chapter 17. Bessel Functions

pp.:  336 – 356

Chapter 18. Orthogonal Polynomials

pp.:  356 – 384

Chapter 19. Laplace Transformation

pp.:  384 – 400

Chapter 20. Fourier Transforms

pp.:  400 – 410

Chapter 21. Numerical Integration

pp.:  410 – 418

Chapter 22. Solutions of Standard Ordinary Differential Equations

pp.:  418 – 462

Chapter 23. Vector Analysis

pp.:  462 – 480

Chapter 24. Systems of Orthogonal Coordinates

pp.:  480 – 494

Chapter 25. Partial Differential Equations and Special Functions

pp.:  494 – 520

Chapter 26. Qualitative Properties of the Heat and Laplace Equation

pp.:  520 – 522

Chapter 27. Solutions of Elliptic, Parabolic, and Hyperbolic Equations

pp.:  522 – 540

Chapter 28. The z-Transform

pp.:  540 – 546

Chapter 29. Numerical Approximation

pp.:  546 – 556

Chapter 30. Conformal Mapping and Boundary Value Problems

pp.:  556 – 572

Short Classified Reference List

pp.:  572 – 576

Index

pp.:  576 – 590

The users who browse this book also browse