Description
Computational Geometry is an area that provides solutions to geometric problems which arise in applications including Geographic Information Systems, Robotics and Computer Graphics. This Handbook provides an overview of key concepts and results in Computational Geometry. It may serve as a reference and study guide to the field. Not only the most advanced methods or solutions are described, but also many alternate ways of looking at problems and how to solve them.
Chapter
Chapter 2. Arrangements and their applications
pp.:
60 – 132
Chapter 3. Discrete geometric shapes: Matching, interpolation, and approximation
pp.:
132 – 166
Chapter 4. Deterministic parallel computational geometry
pp.:
166 – 212
chapter 5. Voronoi diagrams
pp.:
212 – 302
Chapter 6. Mesh generation
pp.:
302 – 344
Chapter 7. Applications of computational geometry to geographic information systems
pp.:
344 – 400
Chapter 8. Making geometry visible: An introduction to the animation of geometric algorithms
pp.:
400 – 436
Chapter 9. Spanning trees and spanners
pp.:
436 – 474
Chapter 10. Geometric data structures
pp.:
474 – 502
Chapter 11. Polygon decomposition
pp.:
502 – 530
Chapter 12. Link distance problems
pp.:
530 – 570
Chapter 13. Derandomization in computational geometry
pp.:
570 – 608
Chapter 14. Robustness and precision issues in geometric computation
pp.:
608 – 644
Chapter 15. Geometric shortest paths and network optimization
pp.:
644 – 714
Chapter 16. Randomized algorithms in computational geometry
pp.:
714 – 736
Chapter 17. Spatial data structures: Concepts and design choices
pp.:
736 – 776
Chapter 18. Parallel computational geometry: An approach using randomization
pp.:
776 – 840
Chapter 19. Visibility in the plane
pp.:
840 – 888
Chapter 20. Closest–point problems in computational geometry
pp.:
888 – 948
Chapter 21. Graph drawing
pp.:
948 – 984
Chapter 22. Art gallery and illumination problems
pp.:
984 – 1040
Author Index
pp.:
1040 – 1074
Subject Index
pp.:
1074 – 1088