Mathematical Statistical Physics :Lecture Notes of the Les Houches Summer School 2005 ( Volume 83 )

Publication subTitle :Lecture Notes of the Les Houches Summer School 2005

Publication series :Volume 83

Author: Bovier   Anton;Dunlop   François;Enter   Aernout Van  

Publisher: Elsevier Science‎

Publication year: 2006

E-ISBN: 9780080479231

P-ISBN(Paperback): 9780444528131

P-ISBN(Hardback):  9780444528131

Subject: O4 Physics;O411.1 Mathematical Methods of Physics

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

The proceedings of the 2005 les Houches summer school on Mathematical Statistical Physics give and broad and clear overview on this fast developing area of interest to both physicists and mathematicians.

  • Introduction to a field of math with many interdisciplinary connections in physics, biology, and computer science
  • Roadmap to the next decade of mathematical statistical mechanics
  • Volume for reference years to come

Chapter

Front cover

pp.:  1 – 3

Title page

pp.:  4 – 5

Copyright page

pp.:  5 – 7

Previous sessions

pp.:  7 – 10

Lecturers

pp.:  10 – 12

Organizers

pp.:  10 – 10

Participants

pp.:  12 – 16

Preface

pp.:  16 – 20

Informal seminars

pp.:  20 – 22

Table of contents

pp.:  22 – 34

Course 2 Some recent aspects of random conformally invariant systems

pp.:  90 – 134

Course 3 Conformal random geometry

pp.:  134 – 252

Course 4 Random motions in random media

pp.:  252 – 276

Course 5 An introduction to mean field spin glas theory: methods and results

pp.:  276 – 306

Course 6 Short-range spin glasses: selected open problems

pp.:  306 – 328

Course 7 Computing the number of metastable states in infinite-range models

pp.:  328 – 364

Course 8 Dynamics of trap models

pp.:  364 – 428

Course 9 Quantum entropy and quantum information

pp.:  428 – 500

Course 10 Two lectures on iterative coding and statistical mechanics

pp.:  500 – 522

Course 11 Evolution in fluctuating populations

pp.:  522 – 580

Course 12 Multi-scale analysis of population models

pp.:  580 – 640

Course 13 Elements of nonequilibrium statistical mechanics

pp.:  640 – 690

Course 14 Mathematical aspects of the abelian sandpile model

pp.:  690 – 764

Course 15 Gibbsianness and non-Gibbsianness in lattice random fields

pp.:  764 – 834

Course 16 Simulation of statistical mechanics models

pp.:  834 – 850

The users who browse this book also browse