In vivo and in vitro studies of Mgs1 suggest a link between genome instability and Okazaki fragment processing

Author: Kim Jeong-Hoon   Kang Young-Hoon   Kang Hyo-Jin   Kim Do-Hyung   Ryu Gi-Hyuck   Kang Min-Jung   Seo Yeon-Soo  

Publisher: Oxford University Press

ISSN: 1362-4962

Source: Nucleic Acids Research, Vol.33, Iss.19, 2005-01, pp. : 6137-6150

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

The non-essential MGS1 gene of Saccharomyces cerevisiae is highly conserved in eukaryotes and encodes an enzyme containing both DNA-dependent ATPase and DNA annealing activities. MGS1 appears to function in post-replicational repair processes that contribute to genome stability. In this study, we identified MGS1 as a multicopy suppressor of the temperature-sensitive dna2Δ405N mutation, a DNA2 allele lacking the N-terminal 405 amino acid residues. Mgs1 stimulates the structure-specific nuclease activity of Rad27 (yeast Fen1 or yFen1) in an ATP-dependent manner. ATP binding but not hydrolysis was sufficient for the stimulatory effect of Mgs1, since non-hydrolyzable ATP analogs are as effective as ATP. Suppression of the temperature-sensitive growth defect of dna2Δ405N required the presence of a functional copy of RAD27, indicating that Mgs1 suppressed the dna2Δ405N mutation by increasing the activity of yFen1 (Rad27) in vivo. Our results provide in vivo and in vitro evidence that Mgs1 is involved in Okazaki fragment processing by modulating Fen1 activity. The data presented raise the possibility that the absence of MGS1 may impair the processing of Okazaki fragments, leading to genomic instability.