Significant correlation between the acceleration of platelet aggregation and phosphorylation of HSP27 at Ser-78 in diabetic patients

Author:              

Publisher: Spandidos Publications

ISSN: 1107-3756

Source: International Journal of Molecular Medicine, Vol.30, Iss.6, 2012-01, pp. : 1387-1395

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

To clarify the mechanism underlying a high risk of thrombotic complications in diabetic patients, we investigated the relationship between HSP27 phosphorylation and the platelet activation induced by adenosine diphosphate (ADP) in diabetic patients. Platelet-rich plasma was prepared from the blood of type 2 diabetes mellitus (DM) patients. By measuring the dose response of platelet aggregation to ADP, an individual ED50 was determined. Based on the normal range identified in non-DM controls, the subjects were divided into a hyper-aggregate (Group 1) and a normo- or hypo-aggregate group (Group 2). The protein phosphorylation was analyzed by western blotting. The release of PDGF-AB and sCD40 ligand (sCD40L) was measured by ELISA. In both groups, ADP induced HSP27 phosphorylation at Ser-78 and Ser-82. The phosphorylation at Ser-78 and the release of both PDGF-AB and sCD40L induced by a low dose of ADP (1 µM) in Group 1 were significantly higher than these values in Group 2. There was a significant relationship between the ADP-induced HSP27 phosphorylation level at Ser-78 and the ADP ED50 value of platelet aggregation. The ADP (1 µM)-induced phosphorylation of HSP at Ser-78 observed in the platelets from Group 1 was inhibited by PD98059 or SB203580. The use of aspirin ameliorated the accelerated microaggregation of platelets in Group 1, and the low-dose ADP-induced phosphorylation of HSP27 at Ser-78 was no longer observed. These results strongly suggest that the phosphorylation of HSP27 at Ser-78 is correlated with the acceleration of platelet aggregation induced by ADP in type 2 DM patients.