WMAP7 constraints on oscillations in the primordial power spectrum

Author: Meerburg P. Daniel   Wijers Ralph A. M. J.   van der Schaar Jan Pieter  

Publisher: Oxford University Press

ISSN: 0035-8711

Source: Monthly Notices of the Royal Astronomical Society, Vol.421, Iss.1, 2012-03, pp. : 369-380

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

ABSTRACTWe use the 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) data to place constraints on oscillations supplementing an almost scale-invariant primordial power spectrum. Such oscillations are predicted by a variety of models, some of which amount to assuming that there is some non-trivial choice of the vacuum state at the onset of inflation. In this paper, we will explore data-driven constraints on two distinct models of initial state modifications. In both models, the frequency, phase and amplitude are degrees of freedom of the theory for which the theoretical bounds are rather weak: both the amplitude and frequency have allowed values ranging over several orders of magnitude. This requires many computationally expensive evaluations of the model cosmic microwave background (CMB) spectra and their goodness of fit, even in a Markov chain Monte Carlo (MCMC), normally the most efficient fitting method for such a problem. To search more efficiently, we first run a densely-spaced grid, with only three varying parameters: the frequency, the amplitude and the baryon density. We obtain the optimal frequency and run an MCMC at the best-fitting frequency, randomly varying all other relevant parameters. To reduce the computational time of each power spectrum computation, we adjust both comoving momentum integration and spline interpolation (in l) as a function of frequency and amplitude of the primordial power spectrum. Applying this to the WMAP7 data allows us to improve existing constraints on the presence of oscillations. We confirm earlier findings that certain frequencies can improve the fitting over a model without oscillations. For those frequencies we compute the posterior probability, allowing us to put some constraints on the primordial parameter space of both models.

Related content