

Author: Shang J Q Mohamedelhassan E Ismail M
Publisher: NRC Research Press
ISSN: 1208-6010
Source: Canadian Geotechnical Journal, Vol.41, Iss.5, 2004-09, pp. : 877-893
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
The electrochemical stabilization processes are studied in a calcareous soil recovered from the Western Australia coast and on the interface of calcareous soil and steel foundation. A series of experiments are performed to study the effects of two chemical agents used in electrochemical stabilization tests. The strengthening effects of electro kinetics and electrochemical treatments on the calcareous soil are investigated first. Significant increases in the undrained shear strength and effective cohesion are obtained after all tests, and the most significant improvement is found after the electrochemical treatment using a 15% CaCl2 solution as the stabilization agent. Subsequently, an electrochemical test is carried out on the calcareous soil with an embedded steel plate to simulate a part of a caisson foundation, using CaCl2 as the stabilization agent. In this test, the practical considerations for later large-scale tests and ultimately for field implementation are taken into account in the design, including factors such as the attachment of electrodes to the foundation, injection of the stabilization agent via perforated pipe electrodes, and distributions of voltage and electrical current in the soil. The result of this test reveals a 700% increase in the steel plate axial load capacity after 7 days of treatment with an applied voltage of 4 V. The main features of the approach are that it generates virtually no disturbance to the soil and the treatment is targeted at the soil–structure interface. With further development, the electrochemical treatment may be applied in offshore engineering for stabilization of foundations installed in weak calcareous soils.
Related content







