![](/images/ico/ico_close.png)
![](/images/ico/ico5.png)
Publisher: MAIK Nauka/Interperiodica
ISSN: 1061-9348
Source: Journal of Analytical Chemistry, Vol.60, Iss.9, 2005-09, pp. : 860-865
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
Related content
![](/images/ico/ico_close.png)
![](/images/ico/ico5.png)
Journal of Analytical Chemistry, Vol. 60, Iss. 8, 2005-08 ,pp. :
![](/images/ico/ico_close.png)
![](/images/ico/ico5.png)
Prediction of High Cycle Fatigue Property of Ti-6Al-4V Alloy Using Artificial Neural Network
Materials Science Forum, Vol. 2016, Iss. 849, 2016-04 ,pp. :
![](/images/ico/ico_close.png)
![](/images/ico/ico5.png)
Combinatorial Chemistry & High Throughput Screening, Vol. 7, Iss. 4, 2004-01 ,pp. :
![](/images/ico/ico_close.png)
![](/images/ico/ico5.png)
![](/images/ico/ico_close.png)
![](/images/ico/ico5.png)
Prediction on tribological properties of short fibre composites using artificial neural networks
By Zhang Z. Friedrich K. Velten K.
Wear, Vol. 252, Iss. 7, 2002-04 ,pp. :