The coupling of crossing over and homologous synapsis in maize inversions

Author: Maguire M.P.   Riess R.W.  

Publisher: Springer Publishing Company

ISSN: 0016-6707

Source: Genetica, Vol.98, Iss.3, 1996-03, pp. : 263-272

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Because fresh initiations of synapsis must occur for homologous synapsis of internal heterozygously inverted chromosome segments, attention has been directed at homologous synapsis and crossing over in overlapping paracentric inversions in the long arm of chromosome 1 of maize. In an earlier study with a relatively short inversion (where double crossovers within the inversion were rare), a recombination nodule (RN) was generally found at pachytene in reverse paired (homologously synapsed) inverted regions. Crossover frequency within the inversion, which could be independently estimated from analysis of bridge and fragment frequency at anaphase I and II, closely corresponded to crossover frequency estimated from observed RN frequency in pachytene inversion loops. These findings were consistent with the interpretation that establishment of homologous synapsis in this case is generally coupled to crossing over. This coupling suggests that there is very early commitment to the form of resolution of recombination intermediates that results in reciprocal recombination events instead of conversion only or other noncrossover events. This study examines another, larger paracentric inversion in the long arm of chromosome 1 that completely overlaps the first inversion. It is sufficiently longer than the first inversion that double crossover events are found within it with substantial frequency and interference considerations are feasible. This study confers additional insight into the interrelationships of synapsis and crossing over and the probable sequence in which the various involved processes usually occur. It raises the strong possibility that crossovers can be initiated during the alignment phase that precedes synapsis.