Author: Nemkovich N. Sobchuk A. Khodasevich I.
Publisher: Springer Publishing Company
ISSN: 0021-9037
Source: Journal of Applied Spectroscopy, Vol.73, Iss.6, 2006-11, pp. : 854-860
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
We have used fluorescence spectroscopy and spontaneous Raman spectroscopy to study the characteristics of two ketocyanine dyes: 2,5-di[(E)-1-(4-diethylaminophenyl)methylidene]-1-cyclopentanone (CPET) and 2-[(E)-1-(4-diethylaminophenyl)methylidene]-5-{(E)-1-[4-(4,7,10,13-tetraoxa-1-azacyclopentadecalin) phenyl]methylidene}-1-cyclopentanone (CPMR) in organic solvents. The position of their electronic spectra depends strongly on the polarity of the solvent. We measured the dipole moments of the dyes in the equilibrium ground state and the Franck-Condon excited state. In mixtures of neutral nonpolar toluene with aprotic polar dimethylsulfoxide, we observe inhomogeneous broadening of the electronic spectra for the indicated compounds, due to fluctuations in solution of the intermolecular interaction energy. The time-resolved characteristics of fluorescence obtained suggest formation of an intermolecular hydrogen bond between the dye and the surrounding medium in a toluene-ethanol mixture. We measured the Raman spectra of CPET and CPMR in different organic solvents. The most intense lines in the 1582–1591 cm−1 region can be assigned to stretching of the phenyl rings of the molecules; the lines in the 831–842 cm−1 region can be assigned to a cyclopentanone ring mode; the lines at 1186–1195 cm−1 can be assigned to stretching of the =C-C-bond of the phenyl ring and rocking of the H atoms of the phenyl ring. We have observed that the position and width of the lines for the stretching vibrations of the ketocyanines depend substantially on the polarity of the surrounding medium.The studied dyes can be used as probes for studying different biological systems by site-selective laser spectroscopy and Raman spectroscopy. The fact that these two methods can be used simultaneously for diagnostics of biosystems is an important advantage of ketocyanine dyes compared with other known probes.