Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice

Author: Zhao Fengyun   Zhang Hui  

Publisher: Springer Publishing Company

ISSN: 0167-6857

Source: Plant Cell, Tissue and Organ Culture, Vol.86, Iss.3, 2006-09, pp. : 349-358

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

GST (Glutathione S-transferase, EC 2.5.1.18) and CAT (Catalase, EC 1.11.1.6) play important roles in oxidative stress resistance. In this study, we transferred both GST and CAT1 of Suaeda salsa into rice (Oryza sativa cv. Zhonghua No.11) by Agrobacterium tumefaciens-mediated transformation under the control of cauliflower mosaic virus (CaMV) 35S promoter, and investigated whether co-expressing the GST and CAT1 in transgenic rice could reduce oxidative damage. Salt and paraquat stresses were applied. The data showed that co-expression of the GST and CAT1 resulted in greater increase of CAT and SOD (Superoxide Dismutase, EC 1.15.1.1) activity in the transgenics compared to non-transgenics following both stress imposition. Whereas the significant increase of GST activity in transgenics only occurred in paraquat stressed plants. While the generation of H2O2, Malon dialdehyde and plasma membrane relative electrolyte leakage decreased in the transgenics than in non-transgenics under the same conditions. Moreover, the transgenic rice seedlings showed markedly enhanced tolerance to salt stress compared with non-transgenics upon 200 mM NaCl treatment in greenhouse. The enhancement of the active oxygen-scavenging system that led to increased oxidative stress protection in GST + CAT1-transgenic rice plants could result not only from increased GST and CAT activity but also from the combined increase in SOD activity.

Related content