Author: Dolgopolik M.
Publisher: Springer Publishing Company
ISSN: 1072-3374
Source: Journal of Mathematical Sciences, Vol.173, Iss.5, 2011-03, pp. : 441-462
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
We study the approximation of nonsmooth functionals defined in a normed space. In particular, we employ the notion of codifferentiability for constructing an inhomogeneous approximation of the functional increment. We prove that the codifferentiable functions form a linear space closed under the main algebraic operations, pointwise maximum, and pointwise minimum. We also construct calculus of codifferentiable functions and prove the codifferentiability of the superposition of codifferentiable functions. Bibliography: 9 titles.
Related content
Subspaces of Normed Riesz Spaces
Positivity, Vol. 8, Iss. 2, 2004-06 ,pp. :
Incenters in real normed spaces
By Tomás Maria
aequationes mathematicae, Vol. 67, Iss. 1-2, 2004-03 ,pp. :
Weighted variational inequalities in normed spaces
By Zhao Qingjun
Optimization, Vol. 59, Iss. 4, 2010-05 ,pp. :
On parallelogram areas in normed linear spaces
aequationes mathematicae, Vol. 72, Iss. 3, 2006-12 ,pp. :