Corrosion performance of titanium and titanium stabilised stainless steels

Author: Boulton L. H.   Betts A. J.  

Publisher: Maney Publishing

ISSN: 0007-0599

Source: British Corrosion Journal, Vol.26, Iss.4, 1991-01, pp. : 287-292

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Titanium and its alloys provide industry with a number of materials which are strong, light, and very corrosion resistant. In addition, titanium is added as an alloying constituent to some stainless steels to act as a stabiliser during welding. Over the past 30 years titanium alloys have been increasingly used in process industries, and wherever ‘nil corrosion’ is considered to be an essential design feature. The main drawback to titanium usage has been relatively high cost, but freedom from plant corrosion failures, reduced downtime for maintenance, and the increasing availability of titanium have made this metal and its alloys an attractive choice in recent years. Applications include process vessels, heat exchangers, marine fittings, offshore components, pump castings, and other applications where materials encounter a hostile service environment. Nevertheless, titanium and its alloys are still subject to some forms of corrosiveattack, such as galvanic corrosion, hydrogen absorption, erosion corrosion, and crevicecorrosion. Special welding procedures are also required, which, if ignored, can lead toserious problems. This paper outlines a number of recent investigations into some problems encountered in industrial and marine environments, where both titanium metal and titanium stabilised stainless steels have suffered unexpected corrosion attack. The case histories described illustrate that titanium may show unexpected corrosion problems if certain aspects of its corrosion behaviour are overlooked.