Alzheimer's
'/> Alzheimer's
'/> Stem Cells in Toxicology and Medicine
Stem Cells in Toxicology and Medicine

Author: Saura C. Sahu  

Publisher: John Wiley & Sons Inc‎

Publication year: 2016

E-ISBN: 9781119135425

P-ISBN(Paperback): 9781119135418

P-ISBN(Hardback):  9781119135418

Subject:

Keyword: Stem Cells
Toxicology
Neurodegenerative Diseases
Parkinson's Disease
Alzheimer's

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

A comprehensive and authoritative compilation of up-to-date developments in stem cell research and its use in toxicology and medicine

  • Presented by internationally recognized investigators in this exciting field of scientific research
  • Provides an insight into the current trends and future directions of research in this rapidly developing new field
  • A valuable and excellent source of authoritative and up-to-date information for researchers, toxicologists, drug industry, risk assessors and regulators in academia, industry and government 

Chapter

Part I

Chapter 1 Introduction

References

Chapter 2 Application of Stem Cells and iPS Cells in Toxicology

2.1 Introduction

2.2 Significance

2.3 Stem Cell (SC) Classification

2.4 Stem Cells and Pharmacotoxicological Screenings

2.5 Industrial Utilization Showcases Stem Cell Technology as a Research Tool

2.6 Multipotent Stem Cells (Adult Stem Cells) Characteristics and Current Uses

2.7 Mesenchymal Stem Cells (Adult Stem Cells)

2.8 Hematopoietic Stem Cells (Adult Stem Cells)

2.9 Cardiotoxicity

2.10 Hepatotoxicity

2.11 Epigenetic Profile

2.12 Use of SC and iPSC in Drug Safety

2.12.1 Potential Benefits of Stem Cell Use in Other Areas

2.12.2 Methodologies

2.12.3 Economic Benefits of Stem Cell Use

2.13 Conclusions and Future Applications

Acknowledgments

References

Chapter 3 Stem Cells: A Potential Source for High Throughput Screening in Toxicology

3.1 Introduction

3.2 Stem Cells

3.2.1 Embryonic Stem Cells (ESCs)

3.2.2 Foetal Stem Cells

3.2.3 Adult Stem Cells

3.2.4 Adult Stem Cells in Other Tissues

3.3 High Throughput Screening (HTS)

3.3.1 Current Strategies and Types of High Throughput Screening

3.3.2 In Vitro Biochemical Assays

3.3.2.1 Fluorescent Based Assays

3.3.2.2 Luminescence‐Based Assays

3.3.2.3 Colorimetric and Chromogenic Assays

3.3.2.4 Mass Spectroscopy (MS) Based Detection Assays

3.3.2.5 Chromatography-Based Assays

3.3.2.6 Immobilization and Label-Free Detection Assays

3.3.3 Cell-Based Assays

3.3.3.1 Reporter Gene Assays

3.3.3.2 Cell-Based Label Free Readouts

3.4 Need for a Stem Cell Approach in High Throughput Toxicity Studies

3.5 Role of Stem Cells in High Throughput Screening for Toxicity Prediction

3.5.1 Applications of Stem Cells in Cardiotoxicity HTS

3.5.2 Applications of Stem Cells in Hepatotoxicity HTS

3.5.3 Applications of Stem Cells in Neurotoxicity HTS

3.6 Conclusion

Acknowledgement

Disclosure Statement

Author’s Contribution

References

Chapter 4 Human Pluripotent Stem Cells for Toxicological Screening

4.1 Introduction

4.2 The Biological Characteristics of hPSCs

4.2.1 The Biological Characteristics of hESCs

4.2.2 The Biological Characteristics of hiPSCs

4.3 Screening of Embryotoxic Effects using hPSCs

4.3.1 Screening of Embryotoxic Effects using hESCs

4.3.2 Screening of Embryotoxic Effects using hiPSCs

4.4 The Potential of hPSC-Derived Neural Lineages in Neurotoxicology

4.4.1 The Challenge of hPSC s-Derived Neural Lineages in Neurotoxicology Applications

4.4.2 The New Biomarkers in Neurotoxicology using hPSC -Derived Neural Lineages

4.4.2.1 Gene Expression Regulation

4.4.2.2 Epigenetic Markers

4.4.2.3 Mitochondrial Function

4.4.3 The New Methods in Neurotoxicology using hPSC -Derived Neural Lineages

4.4.3.1 High-Throughput Methods

4.4.3.2 Three-Dimensional (3-D) Culture

4.5 The Potential of hPSC-Derived Cardiomyocytes in Cardiotoxicity

4.5.1 The Challenge of hPSC-Derived Cardiomyocytes in Cardiotoxicology Applications

4.5.2 The New Biomarkers in Cardiotoxicology using hPSC-Derived Cardiomyocytes

4.5.2.1 Gene Expression

4.5.2.2 Multi-Electrode Array

4.5.3 High-Throughput Methods

4.6 The Potential of hPSC-Derived Hepatocytes in Hepatotoxicity

4.6.1 The Challenge of hPSCs-Derived Hepatocytes in Hepatotoxicology Application

4.6.2 The New Biomarkers in Hepatotoxicology using hPSC -Derived Hepatocytes

4.6.3 The New Methods in Hepatotoxicology using hPSC ‐Derived Hepatocytes

4.6.3.1 iPSC-HH-Based Micropatterned Co-Cultures (iMPCC s) with Murine Embryonic Fibroblasts

4.6.3.2 Suspension Culture of Aggregates of ES Cell-Derived Hepatocytes

4.6.3.3 Long-Term Exposure to Toxic Drugs

4.7 Future Challenges and Perspectives for Embryotoxicity and Developmental Toxicity Studies using hPSCs

Acknowledgments

References

Chapter 5 Effects of Culture Conditions on Maturation of Stem Cell‐Derived Cardiomyocytes

5.1 Introduction

5.2 Lengthening Culture Time

5.3 Substrate Stiffness

5.4 Structured Substrates

5.5 Conclusions

Disclaimer

References

Chapter 6 Human Stem Cell-Derived Cardiomyocyte In Vitro Models for Cardiotoxicity Screening

6.1 Introduction

6.1.1 Cardiotoxicity in Preclinical and Clinical Drug Development

6.1.2 Functional Cardiotoxicity

6.1.3 Structural Cardiotoxicity

6.1.4 Requirement for Improved In Vitro Models to Predict Human Cardiotoxicity

6.2 Overview of hPSC‐Derived Cardiomyocytes

6.3 Human PSC-CM Models for Cardiotoxicity Investigations

6.3.1 hPSC-CMs for the Assessment of Electrophysiological Cardiotoxicity

6.3.1.1 Patch Clamp Assays

6.3.1.2 Voltage Sensitive Dyes (VSDs)

6.3.1.3 Optogenetics

6.3.1.4 Multielectrode Array (MEA) Assays

6.3.1.5 Impedance Assays

6.3.1.6 Calcium Imaging Assays

6.3.2 hPSC-CMs for the Assessment of Contractile Cardiotoxicity

6.3.2.1 Muscular Thin Films

6.3.2.2 Engineered Heart Tissues (EHTs)

6.3.2.3 Impedance Assays

6.3.2.4 Calcium Imaging Assays

6.3.3 hPSC-CMs for the Assessment of Structural Cardiotoxicity

6.3.3.1 Mechanisms of Cardiomyocyte Cell Death as Endpoints in Drug Screening

6.3.3.2 High Content Analysis

6.3.3.3 Impedance Assays

6.3.3.4 SeaHorse Flux Analysers

6.3.3.5 Complex and 3D Models

6.4 Conclusions and Future Direction

References

Chapter 7 Disease-Specific Stem Cell Models for Toxicological Screenings and Drug Development

7.1 Evidence for Stem Cell‐Based Drug Development and Toxicological Screenings in Psychiatric Diseases, Cardiovascular Diseases and Diabetes

7.1.1 Introduction into Stem-Cell Based Drug Development and Toxicological Screenings

7.1.2 Relevance for Psychiatric and Cardiovascular Diseases

7.1.3 Advantages of Human Disease-Specific Stem Cell Models

7.1.4 Pluripotent Stem Cell Models

7.1.5 Reprogramming of Somatic Cells for Disease-Specific Stem Cell Models

7.1.6 Transdifferentation of Somatic Cells for Disease-Specific Stem Cell Models

7.2 Disease-Specific Stem Cell Models for Drug Development in Psychiatric Disorders

7.2.1 Disease-Specific Stem Cell Models Mimicking Neurodegenerative Disorder

7.2.2 Disease-Specific Stem Cell Models Mimicking AD

7.2.3 Disease-Specific Stem Cell Models Mimicking Neurodevelopmental Disorders

7.2.4 Disease-Specific Stem Cell Models Mimicking SCZ

7.3 Stem Cell Models for Cardiotoxicity and Cardiovascular Disorders

7.3.1 Generating Cardiomyocytes In Vitro

7.3.2 Generating Microphysiological Systems to Mimic the Human Heart

7.3.3 Disease-Modeling using Microphysiological Cardiac Systems

7.4 Stem Cell Models for Toxicological Screenings of EDCs

7.4.1 In Vitro Analysis of EDCs in Reproduction and Development

7.4.2 In Vitro Analysis and Toxicological Screenings of Drugs

References

Chapter 8 Three-Dimensional Culture Systems and Humanized Liver Models Using Hepatic Stem Cells for Enhanced Toxicity Assessment

8.1 Introduction

8.2 Hepatic Cell Lines and Primary Human Hepatocytes

8.3 Embryonic Stem Cells and Induced Pluripotent Stem‐Cell Derived Hepatocytes

8.4 Ex Vivo: Three-Dimensional and Multiple-Cell Culture System

8.5 In Vivo: Humanized Liver Models

8.6 Summary

Acknowledgments

References

Chapter 9 Utilization of In Vitro Neurotoxicity Models in Pre‐Clinical Toxicity Assessment

9.1 Introduction

9.1.1 Limitations of Animal Models and the Utility of In Vitro Assays for Neurotoxicity Testing

9.1.2 How Regulatory Requirements Can Shape the Development of In Vitro Screening Tools and Efforts

9.1.3 In Vitro Assays as Useful Tools for Assessing Neurotoxicity in a Pharmaceutical Industry Setting

9.2 Current Models of Drug‐Related Clinical Neuropathies and Effects on Electrophysiological Function

9.2.1 Neuropathy Assessment

9.2.2 Seizure Potential and Electrophysiological Function Assessments

9.2.3 Multi Electrode Arrays to Model Electrophysiological Changes Upon Drug Treatment

9.3 Cell Types that Can Potentially Be Used for In Vitro Neurotoxicity Assessment in Drug Development

9.3.1 Primary Cells Harvested from Neuronal Tissues

9.3.2 Immortalized Cells and Cell Lines

9.3.3 Induced Pluripotent Stem (iPS) Derived Cells

9.4 Utility of iPSC Derived Neurons in In Vitro Safety Assessment

9.4.1 iPSC Derived Neurons in Electrophysiology

9.4.2 iPSC Derived Neurons to Study Neurite Dynamics

9.5 Summary of Key Points for Consideration in Neurotoxicity Assay Development

9.6 Concluding Remarks

References

Chapter 10 A Human Stem Cell Model for Creating Placental Syncytiotrophoblast, the Major Cellular Barrier that Limits Fetal Exposure to Xenobiotics

10.1 Introduction

10.2 General Features of Placental Structure

10.3 The Human Placenta

10.4 Human Placental Cells in Toxicology Research

10.5 Placental Trophoblast Derived from hESC

10.6 Isolation of Syncytial Areas from BAP‐Treated H1 ESC Colonies

10.7 Developmental Regulation of Genes Encoding Proteins Potentially Involved in Metabolism of Xenobiotics

10.7.1 Cytochrome P450 Family Members

10.7.2 SLC Gene Family Members

10.7.3 ATP-Binding Cassette (ABC) Transporters

10.7.4 Metallothionein Family Members

10.8 Concluding Remarks

Acknowledgments

References

Chapter 11 The Effects of Endocrine Disruptors on Mesenchymal Stem Cells

11.1 Mesenchymal Stem Cells

11.1.1 Characterization

11.1.2 Differentiation

11.1.2.1 Adipogenic

11.1.2.2 Osteogenic

11.1.3 Functions and Activities

11.2 Endocrine Disruptors

11.2.1 EDC Major Epidemiologic Associations

11.2.1.1 EDC Association with Obesity

11.2.1.2 EDC Association with Diabetes

11.2.2 Challenges with Exposure Study Interpretation in Human Subjects

11.2.2.1 Nonmonotonicity of EDC Dose‐Response Curves

11.2.2.2 EDC Exposure at Critical Developmental Windows and Association with Adult Disease

11.2.2.3 Effects of Combinations of EDCs

11.2.3 Mechanisms of Action of EDCs

11.3 Pesticides

11.3.1 Organophosphates

11.3.1.1 Cell-Type Specific Effects

11.3.1.2 Molecular Effects

11.3.2 DDT

11.3.2.1 Cell-Specific Effects

11.3.2.2 Molecular Effects

11.4 Alkyl Phenols and Derivatives

11.4.1 Cell-Specific Effects

11.4.1.1 Effects on Adipocytes and Precursors of Adipocytes

11.4.1.2 Effects on Osteoblasts and Precursors of Osteoblasts

11.4.2 Molecular Effects

11.5 Bisphenol A

11.5.1 Cell-Specific Effects

11.5.1.1 Effects on Adipocytes and Precursors of Adipocytes

11.5.1.2 Effects on Osteoblasts and Precursors of Osteoblasts

11.5.2 Molecular Effects

11.6 Polychlorinated Biphenyls

11.6.1 Cell-Specific Effects

11.6.1.1 Effects on Adipocytes and Precursors of Adipocytes

11.6.1.2 Effects on Osteoblasts and Precursors of Osteoblasts

11.6.2 Molecular Effects

11.7 Phthalates

11.7.1 Cell-Specific Effects

11.7.1.1 Effects on Adipocytes and Precursors of Adipocytes

11.7.1.2 Effects on Osteoblasts and Precursors of Osteoblasts

11.7.2 Molecular Effects

11.8 Areas for Future Research

11.9 Conclusions

Abbreviations

References

Chapter 12 Epigenetic Landscape in Embryonic Stem Cells

12.1 Introduction

12.2 DNA Methylation in ESCs

12.3 Histone Methylation in ESCs

12.4 Chromatin Remodeling and ESCs Regulation

12.5 Concluding Remarks

Acknowledgements

References

Part II

Chapter 13 The Effect of Human Pluripotent Stem Cell Platforms on Preclinical Drug Development

13.1 Introduction

13.2 Core Signaling Pathways Underlying hPSC Stemness and Differentiation

13.3 Basic Components of In Vitro and Ex Vivo hPSC Platforms

13.3.1 Growth Medium Development for Drug Discovery

13.3.2 Choices of Extracellular Components

13.4 Diverse hPSC Culture Platforms for Drug Discovery

13.4.1 Colony Type Culture-Based Modules

13.4.2 Suspension Culture

13.4.3 Non-Colony Type Monolayer Empowers Efficient Drug Screening

13.4.4 Tissue Integration: Morphogenesis and Organogenesis

13.5 Representative Analyses of hPSC‐Based Drug Discovery

13.5.1 Neuroectodermal Disease Models for Drug Assessment

13.5.2 Hepatic Models for Drug Assessment

13.5.3 Cardiomyocytes for Cancer Drug Discovery

13.6 Current Challenges and Future Considerations

13.6.1 Dimensionality, Maturity, and Functionality of Differentiated Cells

13.6.2 Complexity: Genetics versus Epigenetics

13.6.3 Other Notable Factors

13.7 Concluding Remarks

Acknowledgments

References

Chapter 14 Generation and Application of 3D Culture Systems in Human Drug Discovery and Medicine

14.1 Introduction

14.2 Traditional Scaffold-Based Tissue Engineering

14.2.1 Materials for Fabrication of Scaffolds

14.2.1.1 Naturally Occurring Polymers

14.2.1.2 Biodegradable Synthetic Polymers

14.2.1.3 Bioactive Glass and Glass Ceramics

14.2.1.4 Hydrogels

14.2.2 Fabrication Methods

14.2.2.1 Photolithography

14.2.2.2 Soft Lithography

14.2.2.3 Microfluidics

14.2.2.4 Emulsification

14.3 Scaffold-Free 3D Culture Systems

14.4 Modular Biofabrication

14.5 3D Bioprinting

14.5.1 Bioprinting Strategies

14.5.1.1 Microextrusion Bioprinting Technology

14.5.1.2 Inkjet Bioprinting Technology

14.5.1.3 Laser-Assisted Bioprinting Technology

14.6 Tissue Modelling and Regenerative Medicine Applications of Pluripotent Stem Cells

14.6.1 The In Vitro Hepatic Models

14.7 Applications in Drug Discovery and Toxicity

14.7.1 3D Culture Systems

14.7.2 Liver In Vitro Models for Drug Discovery, Toxicity, and Modelling Drug Metabolism

14.7.3 Microfluidics

14.8 Conclusions

References

Chapter 15 Characterization and Therapeutic Uses of Adult Mesenchymal Stem Cells

15.1 Introduction

15.2 MSC Characterization

15.2.1 MSC Negative Markers

15.2.2 MSC Positive Markers

15.2.3 MSC Self-Renewal and Maintenance

15.2.4 MSCs Proliferate in Hypoxia Faster than in Normoxia

15.2.5 MSCs Kill Bacteria by Autophagy

15.2.6 MSCs Exhibit Mitochondrial Remodeling

15.2.7 MSCs and Signal Transduction

15.3 MSCs and Tissue or Organ Therapy

15.3.1 MSCs Improve Acute Lung Injury

15.3.2 MSCs Improve Renovascular Function in the Kidney

15.3.3 MSCs Effectively Treat Articular Cartilage Defects and Osteoarthritis

15.3.4 Differentiated MSCs Improve Myocardial Performance

15.3.5 MSCs Improve Radiation-Induced Damage in the Intestinal Mucosal Barrier

15.3.6 MSCs Repair Radiation-Induced Liver Injury

15.3.7 MSCs Accelerate Radiation-Induced Delay in Wound Healing

15.3.8 MSCs Improve Radiation-Induced Cognitive Dysfunction

15.3.9 MSCs Improve Survival after Ionizing Radiation Combined Injury

15.3.10 MSCs Attenuate the Severity of Acute Graft-Versus-Host Disease

15.3.11 MSCs Preconditioned with Mood Stabilizers Enhances Therapeutic Efficacy for Stroke and Huntington’s Disease

15.4 Conclusions

Acknowledgments

References

Chapter 16 Stem Cell Therapeuticsfor Cardiovascular Diseases

16.1 Introduction

16.2 Types of Stem/Progenitor Cell-Derived Endothelial Cells

16.2.1 ESCs/iPSCs

16.2.2 MSCs

16.2.3 MNCs

16.2.4 EPCs

16.3 EPC and Other Stem/Progenitor Cell Therapy in CVDs

16.3.1 EPC Therapy for Ischemic Vascular Diseases (PAD/HLI)

16.3.2 EPC Therapy for Ischemic Cardiac Diseases (MI)

16.3.3 EPC Therapy in Clinical Trials for CVDs

16.4 Strategies and Approaches for Enhancing EPC Therapy in CVDs

16.5 Concluding Remarks

Acknowledgments

References

Chapter 17 Stem-Cell-Based Therapies for Vascular Regeneration in Peripheral Artery Diseases

17.1 Sources of Stem Cells for Vascular Regeneration

17.1.1 Adult Stem Cells

17.1.2 Umbilical Cord-Blood-Derived Stem Cells

17.1.3 Embryonic Stem Cells

17.1.4 Induced Pluripotent Stem Cells

17.2 Canonic Mechanisms Governing Vascular Stem Cells Therapeutic Potential

17.2.1 Differentiation into Vascular Cells

17.2.2 The Paracrine Effect

17.2.2.1 Pro-Angiogenic Factor

17.2.2.2 Vasoactive Factors

17.2.2.3 Extracellular Membrane Vesicles

17.2.3 Interaction with the Host Tissue

17.3 Stem-Cell-Based Therapies in Patients with Peripheral Artery Disease

17.3.1 Mononuclear Cells from Bone Marrow and Peripheral Blood

17.3.2 Selected Cell Population

17.3.3 Endothelial Progenitor Cells

References

Chapter 18 Gene Modified Stem/Progenitor-Cell Therapy for Ischemic Stroke

18.1 Introduction

18.2 Gene Modified Stem Cells for Ischemic Stroke

18.2.1 Gene Modified Mesenchymal Stem Cells

18.2.2 Gene Modified Neural Stem Cells

18.2.3 Gene Modified Endothelial Progenitor Cells

18.2.4 Induced Pluripotent Stem Cells

18.3 Gene Transfer Vectors

18.3.1 Viral Vectors

18.3.2 Non-Viral Vectors

18.4 Unsolved Issues for Gene‐Modified Stem Cells in Ischemic Stroke

18.5 Conclusion

Abbreviations

Acknowledgments

References

Chapter 19 Role of Stem Cells in the Gastrointestinal Tract and in the Development of Cancer

19.1 Introduction

19.2 GI Development and Regeneration

19.2.1 GI Development

19.2.2 GI Stem Cells and Liver Regeneration

19.3 GI Tumorigenesis and Stemness Gene Expression

19.4 Toxicants and Other Stress Trigger Epigenetic Changes, Dedifferentiation, and Carcinogenesis

19.5 Summary and Perspective

Acknowledgments

References

Chapter 20 Cancer Stem Cells: Concept, Significance, and Management

20.1 Introduction

20.2 Stem Cells and Cancer: Historical Perspective

20.3 Cancer Stem Cells

20.3.1 The Origin of Cancer Stem Cells

20.3.1.1 Genetic Instability and Cell Fusion

20.3.1.2 Horizontal Gene Transfer

20.3.1.3 Microenvironment

20.4 Identification and Isolation of CSCs

20.4.1 CD133

20.4.2 CD24

20.4.3 CD44

20.4.4 EpCAM

20.4.5 CD177

20.4.6 CD34

20.4.7 ALDH1

20.4.8 CXCR4

20.4.9 Side Population

20.5 Pathological Significance of Cancer Stem Cells

20.6 Pathways Regulating Cancer Stem Cells

20.6.1 Oct4

20.6.2 Sox2

20.6.3 Nanog

20.6.4 KLF4

20.6.5 Notch

20.6.6 Wnt

20.6.7 Hedgehog

20.6.8 Micro RNAs

20.7 Therapeutic Strategies Targeting Cancer Stem Cells

20.7.1 Targeting CSC-Specific Markers

20.7.2 Targeting CSC-Specific Molecular Signaling Pathways

20.7.3 CSC-Related Immunotherapy

20.7.4 Targeting CSC Microenvironment

20.8 Conclusion and Future Directions

References

Chapter 21 Stem Cell Signaling in the Heterogeneous Development of Medulloblastoma

21.1 Brain Tumor Cancer Stem Cells

21.2 Medulloblastoma

21.3 Hijacking Cerebellar Development

21.3.1 Cerebellum Development

21.3.2 WNT Signaling

21.3.3 Sonic Hedgehog (SHH) Signaling

21.3.4 BMP Signaling

21.3.5 NOTCH Signaling

21.4 Molecular Classification of MB

21.4.1 WNT Subtype

21.4.2 Sonic Hedgehog (SHH) Subtype

21.4.3 Group 3 Subtype

21.4.4 Group 4 Subtype

21.5 Mouse Models and Cell of Origin

21.6 Additional Drivers of MB

21.6.1 Epigenetic Regulators

21.6.2 TP53

21.7 Repurposing Off-Patent Drugs

21.7.1 Repurposing Disulfiram (DSF)

21.8 Emerging Therapies for MB

21.9 Conclusion

Acknowledgments

References

Chapter 22 Induced Pluripotent Stem Cell-Derived Outer-Blood-Retinal Barrier for Disease Modeling and Drug Discovery

22.1 Introduction

22.2 The Outer Blood-Retinal Barrier

22.3 iPSC-Based Model of the Outer-Blood-Retinal-Barrier

22.3.1 Stem Cell Technology Overview

22.3.2 Optimization of RPE Differentiation

22.3.3 Development of the Homeostatic Unit of the OBRB

22.4 iPSC Based OBRB Disease Models

22.4.1 Two-Dimensional iPSC-RPE Disease Models

22.4.1.1 Pigment Retinopathy

22.4.1.2 Gyrate Atrophy

22.4.1.3 Choroideremia

22.4.1.4 Age-Related Macular Degeneration

22.4.1.5 Bestrophin-Related Diseases

22.4.1.6 Leber Congenital Amurosis

22.4.1.7 Retinitis Pigmentosa

22.4.2 Development of Three-Dimensional Models

22.4.2.1 Autonomous Self-Assembly

22.4.2.2 Engineering Intervention

22.5 Applications of iPSC-Based Ocular Disease Models for Drug Discovery

22.5.1 High-Throughput Drug Screening

22.5.2 Microfluidics

22.6 Conclusion and Future Directions

References

Chapter 23 Important Considerations in the Therapeutic Application of Stem Cells in Bone Healing and Regeneration

23.1 Introduction

23.2 Stem Cells, Progenitor Cells, Mesenchymal Stem Cells

23.3 Scaffolds

23.3.1 Graphene

23.4 Animal Models in Bone Healing and Regeneration

23.4.1 Bone Regeneration Models

23.4.2 Clinical Trials in Bone Regeneration

23.5 Conclusions and Future Directions

References

Chapter 24 Stem Cells from Human Dental Tissue for Regenerative Medicine

24.1 Introduction

24.2 Dental Stem Cells

24.2.1 Dental Pulp Stem Cells

24.2.2 Stem Cells from Human Exfoliated Deciduous Teeth

24.2.3 Periodontal Ligament Stem Cells

24.2.4 Dental Follicle Progenitor Cells

24.2.5 Alveolar Bone‐Derived Mesenchymal Stem Cells

24.2.6 Stem Cells from the Apical Papilla

24.2.7 Tooth Germ Progenitor Cells

24.2.8 Gingiva-Derived Mesenchymal Stem Cells

24.3 Potential Clinical Applications

24.3.1 Bone Regeneration

24.3.2 Tooth Root Regeneration

24.3.3 Dentin‐Pulp Regeneration

24.3.4 Periodontal Regeneration

24.3.5 Neurological Disease

24.3.6 Lesions of the Cornea

24.3.7 Regeneration of Other Non‐Dental Tissues

24.3.8 Inflammatory and Allergic Diseases

24.4 Safety

24.4.1 Immune Rejection

24.4.2 Tumor Formation

24.5 Dental Stem Cell Banking

24.6 Conclusions and Perspective

Chapter 25 Stem Cells in the Skin

25.1 Introduction

25.1.1 Skin Structure

25.1.2 Skin Physiological Functions

25.1.3 Skin Regeneration and Skin Stem Cells

25.2 Stem Cells in the Skin

25.2.1 Epidermal Stem Cells

25.2.1.1 Hair Follicle Stem Cells (HFSCs)

25.2.1.2 The Interfollicular Epidermal Stem Cells

25.2.1.3 Sebaceous Stem Cells

25.2.1.4 Melanocyte stem cells

25.2.2 Stem Cells in the Dermals

25.2.3 Stem Cells in the Subcutaneous Tissue

25.3 Isolation and the Biological Markers of Skin Stem Cells

25.4 Skin Stem Cell Niches

25.5 Signaling Control of Stem Cell Differentiation

25.5.1 Wnt Signaling Pathway

25.5.2 MAPK Signaling Pathway

25.5.3 Notch Signaling Pathway

25.6 Stem Cells in Skin Aging

25.7 Stem Cells in Skin Cancer

25.8 Medical Applications of Skin Stem Cells

25.8.1 Stem Cells in Tissue Engineering and Skin Repair

25.8.2 Stem Cells in Hair Follicle Regeneration

25.8.3 Stem Cells in Wound Healing

25.9 Conclusions and Future Directions

References

Author Index

Subject Index

Supplemental Images

EULA

The users who browse this book also browse


No browse record.