Chapter
1.3.3 Offshore Wind Turbine Technology Status
1.4 Offshore Transmission Networks
1.5 Impact on Power System Operation
1.5.1 Power System Dynamics and Stability
1.5.2 Reactive Power and Voltage Support
1.5.4 Wind Turbine Inertial Response
1.6 Grid Code Regulations for the Connection of Wind Generation
2.1.1 Induction Generator (IG)
2.1.2 Back-to-Back Converter
2.1.5 Turbine Transformer
2.2 DFIG Architecture and Mathematical Modelling
2.2.1 IG in the abc Reference Frame
2.2.2 IG in the dq0 Reference Frame
2.2.5 Modelling of the DFIG B2B Power Converter
2.2.6 Average Modelling of Power Electronic Converters
2.3 Control of the DFIG WT
2.3.1 PI Control of Rotor Speed
2.3.2 PI Control of DFIG Reactive Power
2.3.3 PI Control of Rotor Currents
2.3.4 PI Control of dc Voltage
2.3.5 PI Control of Grid-side Converter Currents
2.4 DFIG Dynamic Performance Assessment
2.4.2 Symmetrical Voltage Dips
2.4.3 Asymmetrical Faults
2.4.4 Single-Phase-to-Ground Fault
2.4.5 Phase-to-Phase Fault
2.4.6 Torque Behaviour under Symmetrical Faults
2.4.7 Torque Behaviour under Asymmetrical Faults
2.4.8 Effects of Faults in the Reactive Power Consumption of the IG
2.5 Fault Ride-Through Capabilities and Grid Code Compliance
2.5.1 Advantages and Disadvantages of the Crowbar Protection
2.5.2 Effects of DFIG Variables over Its Fault Ride-Through Capabilities
2.6 Enhanced Control Strategies to Improve DFIG Fault Ride-Through Capabilities
2.6.1 The Two Degrees of Freedom Internal Model Control (IMC)
2.6.2 IMC Controller of the Rotor Speed
2.6.3 IMC Controller of the Rotor Currents
2.6.4 IMC Controller of the dc Voltage
2.6.5 IMC Controller of the Grid-Side Converter Currents
2.6.6 DFIG IMC Controllers Tuning for Attaining Robust Control
2.6.7 The Robust Stability Theorem
3 Fully-Rated Converter Wind Turbine (FRC-WT)
3.1 Synchronous Machine Fundamentals
3.1.1 Synchronous Generator Construction
3.1.2 The Air-Gap Magnetic Field of the Synchronous Generator
3.2 Synchronous Generator Modelling in the dq Frame
3.2.1 Steady-State Operation
3.2.2 Synchronous Generator with Damper Windings
3.3 Control of Large Synchronous Generators
3.3.2 Prime Mover Control
3.4 Fully-Rated Converter Wind Turbines
3.5 FRC-WT with Synchronous Generator
3.5.1 Permanent Magnets Synchronous Generator
3.5.2 FRC-WT Based on Permanent Magnet Synchronous Generator
3.5.3 Generator-Side Converter Control
3.5.4 Modelling of the dc Link
3.5.5 Network-Side Converter Control
3.6 FRC-WT with Squirrel-Cage Induction Generator
3.6.1 Control of the FRC-IG Wind Turbine
3.7 FRC-WT Power System Damper
3.7.1 Power System Oscillations Damping Controller
3.7.2 Influence of Wind Generation on Network Damping
3.7.3 Influence of FRC-WT Damping Controller on Network Damping
4 Offshore Wind Farm Electrical Systems
4.2 Wind Turbines for Offshore – General Aspects
4.3 Electrical Collectors
4.4 Offshore Transmission
4.4.3 CSC-HVDC Transmission
4.4.4 VSC-HVDC Transmission
4.4.5 Multi-Terminal VSC-HVDC Networks
4.6 Reactive Power Compensation Equipment
4.6.1 Static Var Compensator (SVC)
4.6.2 Static Compensator (STATCOM)
4.7.3 Modelling of Underground and Subsea Cables
5 Grid Integration of Offshore Wind Farms – Case Studies
5.2 Offshore Wind Farm Connection Using Point-to-Point VSC-HVDC Transmission
5.3 Offshore Wind Farm Connection Using HVAC Transmission
5.4 Offshore Wind Farm Connected Using Parallel HVAC/VSC-HVDC Transmission
5.5 Offshore Wind Farms Connected Using a Multi-Terminal VSC-HVDC Network
5.6 Multi-Terminal VSC-HVDC for Connection of Inter-Regional Power Systems
6 Offshore Wind Farm Protection
6.1 Protection within the Wind Farm ac Network
6.1.1 Wind Generator Protection Zone
6.1.2 Feeder Protection Zone
6.1.3 Busbar Protection Zone
6.1.4 High-Voltage Transformer Protection Zone
6.2 Study of Faults in the ac Transmission Line of an Offshore DFIG Wind Farm
6.3 Protections for dc Connected Offshore Wind Farms
6.3.1 VSC-HVDC Converter Protection Scheme
6.3.2 Analysis of dc Transmission Line Fault
6.3.3 Pole-to-Pole Faults
6.3.4 Pole-to-Earth Fault
6.3.5 HVDC dc Protections: Challenges and Trends
6.3.6 Simulation Studies of Faults in the dc Transmission Line of an Offshore DFIG Wind Farm
7 Emerging Technologies for Offshore Wind Integration
7.1 Wind Turbine Advanced Control for Load Mitigation
7.1.1 Blade Pitch Control
7.1.2 Blade Twist Control
7.1.3 Variable Diameter Rotor
7.1.4 Active Flow Control
7.2 Converter Interface Arrangements and Collector Design
7.2.1 Converters on Turbine
7.2.2 Converters on Platform
7.2.3 Ac Collection Options: Fixed or Variable Frequency
7.2.4 Evaluation of >Higher (>33 kV) Collection Voltage
7.3 Dc Transmission Protection
7.4 Energy Storage Systems (EESs)
7.4.3 Flywheel Storage System
7.4.4 Pumped-Hydro Storage
7.4.5 Compressed-Air Storage Systems
7.4.6 Superconducting Magnetic Energy Storage (SMES)
7.5 Fault Current Limiters (FCLs)
7.7.1 HTSCs (High-Temperature Superconducting Cables)
7.7.2 GITs (Gas-Insulated Transformers)
7.7.3 GILs (Gas-Insulated Lines)
7.8 Developments in Condition Monitoring
7.8.1 Partial Discharge Monitoring in HV Cables
7.8.2 Transformer Condition Monitoring
7.8.3 Gas-Insulated Switchgear Condition Monitoring
7.8.4 Power Electronics Condition Monitoring
7.9 Smart Grids for Large-Scale Offshore Wind Integration
7.9.1 VPP Control Approach
7.9.2 Phasor Measurement Units
A Voltage Source Converter Topologies
A.1.2 Voltage Source Converter Square-Mode Operation
A.1.3 Pulse Width Modulation
A.2 Neutral-Point Clamped Converter
A.2.1 Selective Harmonic Elimination
A.2.2 Sinusoidal Pulse Width Modulation
A.3 Flying Capacitor (FC) Multilevel Converter
A.4 Cascaded Multilevel Converter
A.5 Modular Multilevel Converter