Fundamentals of Liquid Crystal Devices ( Wiley Series in Display Technology )

Publication series :Wiley Series in Display Technology

Author: Deng-Ke Yang  

Publisher: John Wiley & Sons Inc‎

Publication year: 2014

E-ISBN: 9781118751954

P-ISBN(Hardback):  9781118752005

Subject: TN141.9 Liquid crystal display device

Keyword: nullnull

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Liquid Crystal Devices are crucial and ubiquitous components of an ever-increasing number of technologies. They are used in everything from cellular phones, eBook readers, GPS devices, computer monitors and automotive displays to projectors and TVs, to name but a few. This second edition continues to serve as an introductory guide to the fundamental properties of liquid crystals and their technical application, while explicating the recent advancements within LCD technology. This edition includes important new chapters on blue-phase display technology, advancements in LCD research significantly contributed to by the authors themselves.

This title is of particular interest to engineers and researchers involved in display technology and graduate students involved in display technology research.

  • Key features:
    Updated throughout to reflect the latest technical state-of-the-art in LCD research and development, including new chapters and material on topics such as the properties of blue-phase liquid crystal displays and 3D liquid crystal displays;
  • Explains the link between the fundamental scientific principles behind liquid crystal technology and their application to photonic devices and displays, providing a thorough understanding of the physics, optics, electro-optics and material aspects of Liquid Crystal Devices;
  • Revised material reflecting developments in LCD technology, including updates on optical modelling methods, transmissive LCDs and tunable liquid crystal photonic devices;
  • Chapters conclude with detailed homework problems to further cement an understanding of the topic.

Chapter

1.3.1 Orientational order parameter

1.3.2 Landau–de Gennes theory of orientational order in nematic phase

1.3.3 Maier–Saupe theory

1.4 Elastic Properties of Liquid Crystals

1.4.1 Elastic properties of nematic liquid crystals

1.4.2 Elastic properties of cholesteric liquid crystals

1.4.3 Elastic properties of smectic liquid crystals

1.5 Response of Liquid Crystals to Electromagnetic Fields

1.5.1 Magnetic susceptibility

1.5.2 Dielectric permittivity and refractive index

1.6 Anchoring Effects of Nematic Liquid Crystal at Surfaces

1.6.1 Anchoring energy

1.6.2 Alignment layers

1.7 Liquid crystal director elastic deformation

1.7.1 Elastic deformation and disclination

1.7.2 Escape of liquid crystal director in disclinations

Homework Problems

References

Chapter 2 Propagation of Light in Anisotropic Optical Media

2.1 Electromagnetic Wave

2.2 Polarization

2.2.1 Monochromatic plane waves and their polarization states

2.2.2 Linear polarization state

2.2.3 Circular polarization states

2.2.4 Elliptical polarization state

2.3 Propagation of Light in Uniform Anisotropic Optical Media

2.3.1 Eigenmodes

2.3.2 Orthogonality of eigenmodes

2.3.3 Energy flux

2.3.4 Special cases

2.3.5 Polarizers

2.4 Propagation of Light in Cholesteric Liquid Crystals

2.4.1 Eigenmodes

2.4.2 Reflection of cholesteric liquid crystals

2.4.3 Lasing in cholesteric liquid crystals

Homework Problems

References

Chapter 3 Optical Modeling Methods

3.1 Jones Matrix Method

3.1.1 Jones vector

3.1.2 Jones matrix

3.1.3 Jones matrix of non-uniform birefringent film

3.1.4 Optical properties of twisted nematic

3.2 Mueller Matrix Method

3.2.1 Partially polarized and unpolarized light

3.2.2 Measurement of the Stokes parameters

3.2.3 The Mueller matrix

3.2.4 Poincaré sphere

3.2.5 Evolution of the polarization states on the Poincaré sphere

3.2.6 Mueller matrix of twisted nematic liquid crystals

3.2.7 Mueller matrix of non-uniform birefringence film

3.3 Berreman 4x4 Method

Homework Problems

References

Chapter 4 Effects of Electric Field on Liquid Crystals

4.1 Dielectric Interaction

4.1.1 Reorientation under dielectric interaction

4.1.2 Field-induced orientational order

4.2 Flexoelectric Effect

4.2.1 Flexoelectric effect in nematic liquid crystals

4.2.2 Flexoelectric effect in cholesteric liquid crystals

4.3 Ferroelectric Liquid Crystal

4.3.1 Symmetry and polarization

4.3.2 Tilt angle and polarization

4.3.3 Surface stabilized ferroelectric liquid crystals

4.3.4 Electroclinic effect in chiral smectic liquid crystal

Homework Problems

References

Chapter 5 Fréedericksz Transition

5.1 Calculus of Variation

5.1.1 One dimension and one variable

5.1.2 One dimension and multiple variables

5.1.3 Three dimensions

5.2 Fréedericksz Transition: Statics

5.2.1 Splay geometry

5.2.2 Bend geometry

5.2.3 Twist geometry

5.2.4 Twisted nematic cell

5.2.5 Splay geometry with weak anchoring

5.2.6 Splay geometry with pretilt angle

5.3 Measurement of Anchoring Strength

5.3.1 Polar anchoring strength

5.3.2 Azimuthal anchoring strength

5.4 Measurement of Pretilt Angle

5.5 Fréedericksz Transition: Dynamics

5.5.1 Dynamics of Fréedericksz transition in twist geometry

5.5.2 Hydrodynamics

5.5.3 Backflow

Homework Problems

References

Chapter 6 Liquid Crystal Materials

6.1 Introduction

6.2 Refractive Indices

6.2.1 Extended Cauchy equations

6.2.2 Three-band model

6.2.3 Temperature effect

6.2.4 Temperature gradient

6.2.5 Molecular polarizabilities

6.3 Dielectric Constants

6.3.1 Positive Δε liquid crystals for AMLCD

6.3.2 Negative Δε liquid crystals

6.3.3 Dual-frequency liquid crystals

6.4 Rotational Viscosity

6.5 Elastic Constants

6.6 Figure-of-Merit (FoM)

6.7 Index Matching between Liquid Crystals and Polymers

6.7.1 Refractive index of polymers

6.7.2 Matching refractive index

Homework problems

References

Chapter 7 Modeling Liquid Crystal Director Configuration

7.1 Electric Energy of Liquid Crystals

7.1.1 Constant charge

7.1.2 Constant voltage

7.1.3 Constant electric field

7.2 Modeling Electric Field

7.3 Simulation of Liquid Crystal Director Configuration

7.3.1 Angle representation

7.3.2 Vector representation

7.3.3 Tensor representation

Homework Problems

References

Chapter 8 Transmissive Liquid Crystal Displays

8.1 Introduction

8.2 Twisted Nematic (TN) Cells

8.2.1 Voltage-dependent transmittance

8.2.2 Film-compensated TN cells

8.2.3 Viewing angle

8.3 In-Plane Switching Mode

8.3.1 Voltage-dependent transmittance

8.3.2 Response time

8.3.3 Viewing angle

8.3.4 Classification of compensation films

8.3.5 Phase retardation of uniaxial media at oblique angles

8.3.6 Poincaré sphere representation

8.3.7 Light leakage of crossed polarizers at oblique view

8.3.8 IPS with a positive a film and a positive c film

8.3.9 IPS with positive and negative a films

8.3.10 Color shift

8.4 Vertical Alignment Mode

8.4.1 Voltage-dependent transmittance

8.4.2 Optical response time

8.4.3 Overdrive and undershoot voltage method

8.5 Multi-Domain Vertical Alignment Cells

8.5.1 MVA with a positive a film and a negative c film

8.5.2 MVA with a positive a, a negative a, and a negative c film

8.6 Optically Compensated Bend Cell

8.6.1 Voltage-dependent transmittance

8.6.2 Compensation films for OCB

Homework Problems

References

Chapter 9 Reflective and Transflective Liquid Crystal Displays

9.1 Introduction

9.2 Reflective Liquid Crystal Displays

9.2.1 Film-compensated homogeneous cell

9.2.2 Mixed-mode twisted nematic (MTN) cells

9.3 Transflector

9.3.1 Openings-on-metal transflector

9.3.2 Half-mirror metal transflector

9.3.3 Multilayer dielectric film transflector

9.3.4 Orthogonal polarization transflectors

9.4 Classification of Transflective LCDs

9.4.1 Absorption-type transflective LCDs

9.4.2 Scattering-type transflective LCDs

9.4.3 Scattering and absorption type transflective LCDs

9.4.4 Reflection-type transflective LCDs

9.4.5 Phase retardation type

9.5 Dual-Cell-Gap Transflective LCDs

9.6 Single-Cell-Gap Transflective LCDs

9.7 Performance of Transflective LCDs

9.7.1 Color balance

9.7.2 Image brightness

9.7.3 Viewing angle

Homework Problems

References

Chapter 10 Liquid Crystal Display Matrices, Drive Schemes and Bistable Displays

10.1 Segmented Displays

10.2 Passive Matrix Displays and Drive Scheme

10.3 Active Matrix Displays

10.3.1 TFT structure

10.3.2 TFT operation principles

10.4 Bistable Ferroelectric LCD and Drive Scheme

10.5 Bistable Nematic Displays

10.5.1 Introduction

10.5.2 Twisted-untwisted bistable nematic LCDs

10.5.3 Surface-stabilized nematic liquid crystals

10.6 Bistable Cholesteric Reflective Display

10.6.1 Introduction

10.6.2 Optical properties of bistable Ch reflective displays

10.6.3 Encapsulated cholesteric liquid crystal displays

10.6.4 Transition between cholesteric states

10.6.5 Drive schemes for bistable Ch displays

Homework Problems

References

Chapter 11 Liquid Crystal/Polymer Composites

11.1 Introduction

11.2 Phase Separation

11.2.1 Binary mixture

11.2.2 Phase diagram and thermal induced phase separation

11.2.3 Polymerization induced phase separation

11.2.4 Solvent-induced phase separation

11.2.5 Encapsulation

11.3 Scattering Properties of LCPCs

11.4 Polymer Dispersed Liquid Crystals

11.4.1 Liquid crystal droplet configurations in PDLCs

11.4.2 Switching PDLCs

11.4.3 Scattering PDLC devices

11.4.4 Dichroic dye-doped PDLC

11.4.5 Holographic PDLCs

11.5 PSLCs

11.5.1 Preparation of PSLCs

11.5.2 Working modes of scattering PSLCs

11.6 Scattering-Based Displays from LCPCs

11.6.1 Reflective displays

11.6.2 Projection displays

11.6.3 Transmissive direct-view displays

11.7 Polymer-Stabilized LCDs

Homework Problems

References

Chapter 12 Tunable Liquid Crystal Photonic Devices

12.1 Introduction

12.2 Laser Beam Steering

12.2.1 Optical phased array

12.2.2 Prism-based beam steering

12.3 Variable Optical Attenuators

12.4 Tunable-Focus Lens

12.4.1 Tunable-focus spherical lens

12.4.2 Tunable-focus cylindrical lens

12.4.3 Switchable positive and negative microlens

12.4.4 Hermaphroditic LC microlens

12.5 Polarization-Independent LC Devices

12.5.1 Double-layered homogeneous LC cells

12.5.2 Double-layered LC gels

Homework Problems

References

Chapter 13 Blue Phases of Chiral Liquid Crystals

13.1 Introduction

13.2 Phase Diagram of Blue Phases

13.3 Reflection of Blue Phases

13.3.1 Basics of crystal structure and X-ray diffraction

13.3.2 Bragg reflection of blue phases

13.4 Structure of Blue Phase

13.4.1 Defect theory

13.4.2 Landau theory

13.5 Optical Properties of Blue Phase

13.5.1 Reflection

13.5.2 Transmission

Homework Problems

References

Chapter 14 Polymer-Stabilized Blue Phase Liquid Crystals

14.1 Introduction

14.2 Polymer-Stabilized Blue Phases

14.2.1 Nematic LC host

14.2.2 Chiral dopants

14.2.3 Monomers

14.3 Kerr Effect

14.3.1 Extended Kerr effect

14.3.2 Wavelength effect

14.3.3 Frequency effect

14.3.4 Temperature effects

14.4 Device Configurations

14.4.1 In-plane-switching BPLCD

14.4.2 Protruded electrodes

14.4.3 Etched electrodes

14.4.4 Single gamma curve

14.5 Vertical Field Switching

14.5.1 Device structure

14.5.2 Experiments and simulations

14.6 Phase Modulation

References

Chapter 15 Liquid Crystal Display Components

15.1 Introduction

15.2 Light Source

15.3 Light-guide

15.4 Diffuser

15.5 Collimation Film

15.6 Polarizer

15.6.1 Dichroic absorbing polarizer

15.6.2 Dichroic reflective polarizer

15.7 Compensation Film

15.7.1 Form birefringence compensation film

15.7.2 Discotic liquid crystal compensation film

15.7.3 Compensation film from rigid polymer chains

15.7.4 Drawn polymer compensation film

15.8 Color Filter

References

Chapter 16 Three-Dimensional Displays

16.1 Introduction

16.2 Depth Cues

16.2.1 Binocular disparity

16.2.2 Convergence

16.2.3 Motion parallax

16.2.4 Accommodation

16.3 Stereoscopic Displays

16.3.1 Head-mounted displays

16.3.2 Anaglyph

16.3.3 Time sequential stereoscopic displays with shutter glasses

16.3.4 Stereoscopic displays with polarizing glasses

16.4 Autostereoscopic Displays

16.4.1 Autostereoscopic displays based on parallax barriers

16.4.2 Autostereoscopic displays based on lenticular lens array

16.4.3 Directional backlight

16.5 Integral imaging

16.6 Holography

16.7 Volumetric displays

16.7.1 Swept volumetric displays

16.7.2 Multi-planar volumetric displays

16.7.3 Points volumetric displays

References

Index

End User License Agreement

The users who browse this book also browse