Chapter
1.3.1 Orientational order parameter
1.3.2 Landau–de Gennes theory of orientational order in nematic phase
1.4 Elastic Properties of Liquid Crystals
1.4.1 Elastic properties of nematic liquid crystals
1.4.2 Elastic properties of cholesteric liquid crystals
1.4.3 Elastic properties of smectic liquid crystals
1.5 Response of Liquid Crystals to Electromagnetic Fields
1.5.1 Magnetic susceptibility
1.5.2 Dielectric permittivity and refractive index
1.6 Anchoring Effects of Nematic Liquid Crystal at Surfaces
1.7 Liquid crystal director elastic deformation
1.7.1 Elastic deformation and disclination
1.7.2 Escape of liquid crystal director in disclinations
Chapter 2 Propagation of Light in Anisotropic Optical Media
2.2.1 Monochromatic plane waves and their polarization states
2.2.2 Linear polarization state
2.2.3 Circular polarization states
2.2.4 Elliptical polarization state
2.3 Propagation of Light in Uniform Anisotropic Optical Media
2.3.2 Orthogonality of eigenmodes
2.4 Propagation of Light in Cholesteric Liquid Crystals
2.4.2 Reflection of cholesteric liquid crystals
2.4.3 Lasing in cholesteric liquid crystals
Chapter 3 Optical Modeling Methods
3.1.3 Jones matrix of non-uniform birefringent film
3.1.4 Optical properties of twisted nematic
3.2 Mueller Matrix Method
3.2.1 Partially polarized and unpolarized light
3.2.2 Measurement of the Stokes parameters
3.2.5 Evolution of the polarization states on the Poincaré sphere
3.2.6 Mueller matrix of twisted nematic liquid crystals
3.2.7 Mueller matrix of non-uniform birefringence film
Chapter 4 Effects of Electric Field on Liquid Crystals
4.1 Dielectric Interaction
4.1.1 Reorientation under dielectric interaction
4.1.2 Field-induced orientational order
4.2.1 Flexoelectric effect in nematic liquid crystals
4.2.2 Flexoelectric effect in cholesteric liquid crystals
4.3 Ferroelectric Liquid Crystal
4.3.1 Symmetry and polarization
4.3.2 Tilt angle and polarization
4.3.3 Surface stabilized ferroelectric liquid crystals
4.3.4 Electroclinic effect in chiral smectic liquid crystal
Chapter 5 Fréedericksz Transition
5.1 Calculus of Variation
5.1.1 One dimension and one variable
5.1.2 One dimension and multiple variables
5.2 Fréedericksz Transition: Statics
5.2.4 Twisted nematic cell
5.2.5 Splay geometry with weak anchoring
5.2.6 Splay geometry with pretilt angle
5.3 Measurement of Anchoring Strength
5.3.1 Polar anchoring strength
5.3.2 Azimuthal anchoring strength
5.4 Measurement of Pretilt Angle
5.5 Fréedericksz Transition: Dynamics
5.5.1 Dynamics of Fréedericksz transition in twist geometry
Chapter 6 Liquid Crystal Materials
6.2.1 Extended Cauchy equations
6.2.4 Temperature gradient
6.2.5 Molecular polarizabilities
6.3.1 Positive Δε liquid crystals for AMLCD
6.3.2 Negative Δε liquid crystals
6.3.3 Dual-frequency liquid crystals
6.6 Figure-of-Merit (FoM)
6.7 Index Matching between Liquid Crystals and Polymers
6.7.1 Refractive index of polymers
6.7.2 Matching refractive index
Chapter 7 Modeling Liquid Crystal Director Configuration
7.1 Electric Energy of Liquid Crystals
7.1.3 Constant electric field
7.2 Modeling Electric Field
7.3 Simulation of Liquid Crystal Director Configuration
7.3.1 Angle representation
7.3.2 Vector representation
7.3.3 Tensor representation
Chapter 8 Transmissive Liquid Crystal Displays
8.2 Twisted Nematic (TN) Cells
8.2.1 Voltage-dependent transmittance
8.2.2 Film-compensated TN cells
8.3 In-Plane Switching Mode
8.3.1 Voltage-dependent transmittance
8.3.4 Classification of compensation films
8.3.5 Phase retardation of uniaxial media at oblique angles
8.3.6 Poincaré sphere representation
8.3.7 Light leakage of crossed polarizers at oblique view
8.3.8 IPS with a positive a film and a positive c film
8.3.9 IPS with positive and negative a films
8.4 Vertical Alignment Mode
8.4.1 Voltage-dependent transmittance
8.4.2 Optical response time
8.4.3 Overdrive and undershoot voltage method
8.5 Multi-Domain Vertical Alignment Cells
8.5.1 MVA with a positive a film and a negative c film
8.5.2 MVA with a positive a, a negative a, and a negative c film
8.6 Optically Compensated Bend Cell
8.6.1 Voltage-dependent transmittance
8.6.2 Compensation films for OCB
Chapter 9 Reflective and Transflective Liquid Crystal Displays
9.2 Reflective Liquid Crystal Displays
9.2.1 Film-compensated homogeneous cell
9.2.2 Mixed-mode twisted nematic (MTN) cells
9.3.1 Openings-on-metal transflector
9.3.2 Half-mirror metal transflector
9.3.3 Multilayer dielectric film transflector
9.3.4 Orthogonal polarization transflectors
9.4 Classification of Transflective LCDs
9.4.1 Absorption-type transflective LCDs
9.4.2 Scattering-type transflective LCDs
9.4.3 Scattering and absorption type transflective LCDs
9.4.4 Reflection-type transflective LCDs
9.4.5 Phase retardation type
9.5 Dual-Cell-Gap Transflective LCDs
9.6 Single-Cell-Gap Transflective LCDs
9.7 Performance of Transflective LCDs
Chapter 10 Liquid Crystal Display Matrices, Drive Schemes and Bistable Displays
10.2 Passive Matrix Displays and Drive Scheme
10.3 Active Matrix Displays
10.3.2 TFT operation principles
10.4 Bistable Ferroelectric LCD and Drive Scheme
10.5 Bistable Nematic Displays
10.5.2 Twisted-untwisted bistable nematic LCDs
10.5.3 Surface-stabilized nematic liquid crystals
10.6 Bistable Cholesteric Reflective Display
10.6.2 Optical properties of bistable Ch reflective displays
10.6.3 Encapsulated cholesteric liquid crystal displays
10.6.4 Transition between cholesteric states
10.6.5 Drive schemes for bistable Ch displays
Chapter 11 Liquid Crystal/Polymer Composites
11.2.2 Phase diagram and thermal induced phase separation
11.2.3 Polymerization induced phase separation
11.2.4 Solvent-induced phase separation
11.3 Scattering Properties of LCPCs
11.4 Polymer Dispersed Liquid Crystals
11.4.1 Liquid crystal droplet configurations in PDLCs
11.4.3 Scattering PDLC devices
11.4.4 Dichroic dye-doped PDLC
11.5.1 Preparation of PSLCs
11.5.2 Working modes of scattering PSLCs
11.6 Scattering-Based Displays from LCPCs
11.6.1 Reflective displays
11.6.2 Projection displays
11.6.3 Transmissive direct-view displays
11.7 Polymer-Stabilized LCDs
Chapter 12 Tunable Liquid Crystal Photonic Devices
12.2.1 Optical phased array
12.2.2 Prism-based beam steering
12.3 Variable Optical Attenuators
12.4.1 Tunable-focus spherical lens
12.4.2 Tunable-focus cylindrical lens
12.4.3 Switchable positive and negative microlens
12.4.4 Hermaphroditic LC microlens
12.5 Polarization-Independent LC Devices
12.5.1 Double-layered homogeneous LC cells
12.5.2 Double-layered LC gels
Chapter 13 Blue Phases of Chiral Liquid Crystals
13.2 Phase Diagram of Blue Phases
13.3 Reflection of Blue Phases
13.3.1 Basics of crystal structure and X-ray diffraction
13.3.2 Bragg reflection of blue phases
13.4 Structure of Blue Phase
13.5 Optical Properties of Blue Phase
Chapter 14 Polymer-Stabilized Blue Phase Liquid Crystals
14.2 Polymer-Stabilized Blue Phases
14.3.1 Extended Kerr effect
14.3.4 Temperature effects
14.4 Device Configurations
14.4.1 In-plane-switching BPLCD
14.4.2 Protruded electrodes
14.4.4 Single gamma curve
14.5 Vertical Field Switching
14.5.2 Experiments and simulations
Chapter 15 Liquid Crystal Display Components
15.6.1 Dichroic absorbing polarizer
15.6.2 Dichroic reflective polarizer
15.7.1 Form birefringence compensation film
15.7.2 Discotic liquid crystal compensation film
15.7.3 Compensation film from rigid polymer chains
15.7.4 Drawn polymer compensation film
Chapter 16 Three-Dimensional Displays
16.2.1 Binocular disparity
16.3 Stereoscopic Displays
16.3.1 Head-mounted displays
16.3.3 Time sequential stereoscopic displays with shutter glasses
16.3.4 Stereoscopic displays with polarizing glasses
16.4 Autostereoscopic Displays
16.4.1 Autostereoscopic displays based on parallax barriers
16.4.2 Autostereoscopic displays based on lenticular lens array
16.4.3 Directional backlight
16.7.1 Swept volumetric displays
16.7.2 Multi-planar volumetric displays
16.7.3 Points volumetric displays
End User License Agreement