Semiconductor Circuits :Theory, Design and Experiment

Publication subTitle :Theory, Design and Experiment

Author: Abrahams   J. R.;Pridham   G. J.;Hiller   N.  

Publisher: Elsevier Science‎

Publication year: 1966

E-ISBN: 9781483185781

P-ISBN(Paperback): 9780080116525

P-ISBN(Hardback):  9780080116525

Subject: TN3 semiconductor technology

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Semiconductor Circuits: Theory, Design and Experiment details the information that are essential in designing and modifying circuits involving transistors and related semiconductor devices. The main concern of the book is the practical aspects of designing transistor circuits.
The title first covers the physical theory of semiconductors, which includes the production of pn junctions, and the characteristics and equivalent circuits of transistors. Next, the selection covers the design of circuits, such as oscillator circuits, pulse circuits, and computing circuits. The last part of the text deals with experiment with semiconductors.
The book will be of great use to students of electrical engineering.

Chapter

1.5. Electron Energy Levels

1.6. Fermi Level

1.7. Energy Levels in Conductors

1.8. Hall Effect in Conductors

1.9. Contact Potential between Metals

1.10. Energy Levels in Insulators

1.11. Energy Levels in Intrinsic Semiconductors

1.12. Energy Levels in Extrinsic Semiconductors

Questions for Chapter 1

CHAPTER 2. Physics of Semiconductor Devices

2.1. The pn Junction

2.2. pn Junction with Zero Bias

2.3. pn Junction with Forward Bias

2.4. pn Junction with Reverse Bias

2.5. The Zener Diode

2.6. The Tunnel (Esaki) Diode

2.7. Metal–Semiconductor Diodes

2.8. The pnp Transistor

2.9. The npn Transistor

Questions for Chapter 2

CHAPTER 3. Construction and Characteristics of Transistors

3.1. Introduction

3.2. Preparation of Crystal

3.3. Alloying

3.4. Grown Junctions

3.5. Diffusion

3.6. Epitaxial and Planar Techniques

3.7. Encapsulation

3.8. D.C. Characteristics

3.9. Leakage Currents

3.10. Current Gain

3.11. Power Dissipation

Questions for Chapter 3

CHAPTER 4. Equivalent Circuits

4.1. Common Base, Low Frequency, Equivalent T Circuit

4.2. Common Base, High Frequency, Equivalent T Circuit

4.3. Common Emitter, Low Frequency, Equivalent T Circuit

4.4. Common Emitter, Hybrid π Equivalent Circuit

4.5. Common Collector Equivalent T Circuit

4.6. h Parameters

4.7. Relation between h and T Parameters

4.8. Z Parameters

4.9. Relation between Z and T Parameters

4.10. Y Parameters

4.11. Relation between Y and T Parameters

Questions for Chapter 4

PART II: Design of Circuits

CHAPTER 5. Rectifiers and Stabilizers

5.1. Semiconductor Diodes

5.2. Half-wave Rectifier

5.3. Full-wave Rectifier

5.4. Voltage Multipliers

5.5. Diode Voltmeters

5.6. Diode Stabilizer

5.7. Transistor–Diode Stabilizers

5.8. Stabilizer Design Example

5.9. The Silicon Controlled Rectifier

5.10. Applications of the Thyristor

Questions for Chapter 5

CHAPTER 6. Voltage Amplifiers

6.1. Basic Amplifier Circuits

6.2. D.C. Biasing and Stabilization

6.3. Feedback Resistor Stabilization

6.4. Base Resistor and Emitter Bias Stabilization

6.5. Potential Divider and Emitter Bias Stabilization

6.6. Analysis and Design of Circuits Using Load Lines

6.7. Analysis of Circuits Using the T Equivalent Circuit

6.8. Comparison of Transistor Circuits

6.9. R.C. Coupling of Transistor Stages

6.10. Drift Transistor

6.11. R.F. Amplifiers

6.12. D.C. Amplifiers

Questions for Chapter 6

CHAPTER 7. Power Amplifiers

7.1. Classification of Power Amplifiers

7.2. Class A Power Amplifier

7.3. Common Emitter Push-pull Amplifier

7.4. Design Example—Transformer-coupled Push-pull Amplifier

7.5. Transformer-less Audio Amplifiers

7.6. Servo System Amplifiers

7.7. Class C High Frequency Amplifiers

Questions for Chapter 7

CHAPTER 8. Oscillator Circuits

8.1. L.C. Feedback Oscillator

8.2. R.C. Oscillators

8.3. Negative Resistance Oscillators

8.4. Crystal Controlled Transistor Oscillators

8.5. Inverters and Converters

Questions for Chapter 8

CHAPTER 9. Pulse and Computing Circuits

9.1. Introduction

9.2. Astable Multivibrator

9.3. Monostable Multivibrator

9.4. Bistable Multivibrator

9.5. Binary and Decade Counters

9.6. Ring Counter with pnpn Transistors

9.7. Digital Computing Operations

9.8. Diode Gate Circuits

9.9. Transistor–Resistor Logic

9.10. All-transistor Switching

Questions for Chapter 9

CHAPTER 10. Photo-electric Applications

10.1. Types of Semiconductor Photocells

10.2. Photo-conductive Cells and Their Applications

10.3. Photo-diode Circuit

10.4. The Photo-transistor

10.5. Construction of Silicon Solar Cells

10.6. Electrical Properties of Solar Cells

Questions for Chapter 10

CHAPTER 11. Special Applications

11.1. Amplitude Modulation

11.2. Amplitude Demodulation

11.3. Frequency Modulation

11.4. Electronic Switching Circuits

11.5. Ferrite Core Driving Circuits

11.6. D.C. Motor Control

Questions for Chapter 11

PART ΙII: Experiments with Semiconductors

CHAPTER 12. Laboratory Demonstrations: Semiconductor Characteristics and Circuits

12.1. Comparison of Metal and Semiconductor Diodes

12.2. Transistor Characteristics

12.3. Characteristic of a Silicon Controlled Rectifier

12.4. Phase Control of a Silicon Controlled Rectifier

12.5. Characteristic of a Zener Diode

12.6. Stabilizing Action of a Zener Diode

12.7. Demonstration of Hall Effect

CHAPTER 13. Experiments with Semiconductor Circuits

13.1. Variation of Current Gain with Frequency and Emitter Current

13.2. Common Emitter Amplifier

13.3. The Emitter Follower

13.4. The Tuned Collector Oscillator

13.5. Transistor R.C. Oscillators

13.6. Multivibrator Circuits

13.7. A Semiconductor Modulator

CHAPTER 14. Design Experiments

14.1. Single-stage Audio Amplifier

14.2. Simple D.C. Stabilizer

14.3. Power Stabilizer Circuits

14.4. Frequency Modulation, with a Varactor

14.5. Semiconductor Gate Circuits

14.6. Push-pull Driver Amplifier Stage

Appendix A: Answers to Numerical Questions

Appendix B: References for Further Reading

Appendix C: Proof of μ = re/2rc (1–α0)

Appendix D: Classification of Symbols

Index

SIGNAL FLOW ANALYSIS

ELECTRONIC COMPONENTS, TUBES AND TRANSISTORS

The users who browse this book also browse


No browse record.