Goodness-of-fit tests for binomial AR(1) processes

Author: Kim Hee-Young   Weiß Christian H.  

Publisher: Taylor & Francis Ltd

E-ISSN: 1029-4910|49|2|291-315

ISSN: 0233-1888

Source: Statistics, Vol.49, Iss.2, 2015-03, pp. : 291-315

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

The binomial AR(1) model describes a nonlinear process with a first-order autoregressive (AR(1)) structure and a binomial marginal distribution. To develop goodness-of-fit tests for the binomial AR(1) model, we investigate the observed marginal distribution of the binomial AR(1) process, and we tackle its autocorrelation structure. Motivated by the family of power-divergence statistics for handling discrete multivariate data, we derive the asymptotic distribution of certain categorized power-divergence statistics for the case of a binomial AR(1) process. Then we consider Bartlett's formula, which is widely used in time series analysis to provide estimates of the asymptotic covariance between sample autocorrelations, but which is not applicable when the underlying process is nonlinear. Hence, we derive a novel Bartlett-type formula for the asymptotic distribution of the sample autocorrelations of a binomial AR(1) process, which is then applied to develop tests concerning the autocorrelation structure. Simulation studies are carried out to evaluate the size and power of the proposed tests under diverse alternative process models. Several real examples are used to illustrate our methods and findings.