The structures of the isomorphous potassium and rubidium salts of 4‐nitrobenzoic acid and an overview of the metal complex stereochemistries of the alkali metal salt series with this ligand

Publisher: John Wiley & Sons Inc

E-ISSN: 2053-2296|71|6|499-505

ISSN: 0108-2701

Source: ACTA CRYSTALLOGRAPHICA SECTION C (ELECTRONIC), Vol.71, Iss.6, 2015-06, pp. : 499-505

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

4‐Nitrobenzoic acid (PNBA) has proved to be a useful ligand for the preparation of metal complexes but the known structures of the alkali metal salts of PNBA do not include the rubidium salt. The structures of the isomorphous potassium and rubidium polymeric coordination complexes with PNBA, namely poly[μ2‐aqua‐aqua‐μ3‐(4‐nitrobenzoato)‐potassium], [K(C7H4N2O2)(H2O)2]n, (I), and poly[μ3‐aqua‐aqua‐μ5‐(4‐nitrobenzoato)‐rubidium], [Rb(C7H4N2O2)(H2O)2]n, (II), have been determined. In (I), the very distorted KO6 coordination sphere about the K+ centres in the repeat unit comprise two bridging nitro O‐atom donors, a single bridging carboxylate O‐atom donor and two water molecules, one of which is bridging. In Rb complex (II), the same basic MO6 coordination is found in the repeat unit, but it is expanded to RbO9 through a slight increase in the accepted Rb—O bond‐length range and includes an additional Rb—Ocarboxylate bond, completing a bidentate O,O′‐chelate interaction, and additional bridging Rb—Onitro and Rb—Owater bonds. The comparative K—O and Rb—O bond‐length ranges are 2.7352 (14)–3.0051 (14) and 2.884 (2)–3.182 (2) Å, respectively. The structure of (II) is also isomorphous, as well as isostructural, with the known structure of the nine‐coordinate caesium 4‐nitrobenzoate analogue, (III), in which the Cs—O bond‐length range is 3.047 (4)–3.338 (4) Å. In all three complexes, common basic polymeric extensions are found, including two different centrosymmetric bridging interactions through both water and nitro groups, as well as extensions along c through the para‐related carboxylate group, giving a two‐dimensional structure in (I). In (II) and (III), three‐dimensional structures are generated through additional bridges involving the nitro and water O atoms. In all three structures, the two water molecules are involved in similar intra‐polymer O—H...O hydrogen‐bonding interactions to both carboxylate and water O‐atom acceptors. A comparison of the varied coordination behaviour of the full set of Li–Cs salts with 4‐nitrobenzoic acid is also made.