Chapter
Solution of the Matrix Equations
Elasto-plastic Material with von Mises Linear Hardening
Square Membrane with a Circular Hole
Extention to Linear Fracture Mechanics
Domain Decomposition and Discretization
Solution of the Equation System
Bar with a Single Edge Crack
Annex 1: Construction of the Voronoi Cells
Case of a non Convex Domain
Annex.2: Laplace Interpolant
Case of a Point X Inside the Domain
Case of a Point X on the Domain Contour
Annex 3. Particular Case of a Regular Grid of Nodes
Case 1: X between A and B
Case 2: X between B and C
Case 3: X between C and D
Annex 4. Introduction of the Hypotheses in the FdV Principle
Annex 5. Analytical Calculation of V andIH.
Analytical Integration of V over a Triangle
Analytical Integration of IH over a Triangle
Chapter 2 NUMERICAL AND THEORETICAL INVESTIGATIONS OF THE TENSILE FAILURE OF SHRUNK CEMENT-BASED COMPOSITES
1.1. Characteristics of Shrunk Concrete
1.2. Algorithm to Produce a Shrunk Specimen
1.3. Lattice-Type Modeling of Concrete
3. Method to Simulate Mismatch Deformation Due to Matrix Uniform Shrinkage
4. Global Numerical Procedure
4.1. Mohr-Coulomb Criterion
4.2. Event-By-Event Algorithm
5. Theoretical Analyses of Influences of Pre-stressed Field
6. Numerical Examples and Discussions
6.1. Production of Shrunk Specimens
6.2. Tensile Examples on Specimens without the Shrinkage-Induced Stress: Case 1 and Case 2
6.3. Analysis of a Typical Case for Shrunk Specimens: Case 3
6.4. Influence of the Shrinkage Rate: Case 3-5
Chapter 3 RECENT ADVANCES IN THE STATIC ANALYSIS OF STIFFENED PLATES – APPLICATION TO CONCRETE OR TO COMPOSITE STEEL-CONCRETE STRUCTURES
A. In the Plate (at the Traces of the Two Interface Lines J=1,2 of the I-Th Plate-Beam Interface)
B. In Each (I-Th) Beam (iiiiOxyz System of Axes)
A. For the Plate Transverse Deflection pw.
B. For the Plate Inplane Displacement Components pu, pv.
C. For the Beam Transverse Displacements ibw, ibv and for the Angle of Twist ibxθ.
D. For the Axial Deformation ibu
Chapter 4 A SPRING-BASED FINITE ELEMENT MODEL FOR THE PREDICTION OF MECHANICAL PROPERTIES OF CARBON NANOTUBES AND THEIR COMPOSITES
3. Interatomic Interactions
4. Finite Element Formulation
4.3. Swcnt Reinforced Composite
4.3.1. Swcnt Reinforcement Modeling
4.3.3. Interface Modeling
5. Numerical Results and Discussion
5.1. Static Behavior of SWCNTs
5.2. Static Behavior of Swcnt Reinforced Composites
5.3. Dynamic Behavior of SWCNTs
5.4. Dynamic Behavior of MWCNTs
Chapter5COMPUTATIONALMECHANICSOFMOLECULARSYSTEMS
2.MolecularPhaseSpaceTrajectoryasaComplexDynamicalSystem
3.TheProblemofSymbolisation
4.HowComputationalMechanicsCanBeUsedtoFindaSuit-ableSymbolisation
4.1.TheDynamicsMakesthePartitionFiner
4.2.ComputationalMechanicsCoarsensthePartition
4.3.ThePartitionGeneratedbyComputationalMechanicsIstheMostIn-formativeOne
4.4.ThreeStagesofSymbolisation
5.1.MolecularDynamicsSimulation
5.3.-machineReconstruction:CSSR
6.1.-MachineGrowswiththeLengthofTimeSeries
6.2.AnalysisoftheCausalStates
6.3.Non-stationaryModelofGrowing-Machine
Chapter 6 MESHLESS APPROACH AND ITS APPLICATION IN ENGINEERING PROBLEMS
2.1. The Analog Equation Method
2.2. RBF Approximation for the Particular Solution pu
2.3. VBCM for the Homogeneous Solution
2.4. The Construction of Solution System
Example 1: Nonlinear Poisson Problems
3. Steady-State Heat Conduction in Inhomogeneous Materials
3.1. Governing Equation for Steady-State Heat Conduction in Isotropic Heterogeneous Media
3.2. Governing Equation for Steady-State Heat Conduction in Anisotropic Media
3.3. Implementation of the Meshless Method
3.4. The Virtual Boundary Collocation Method for the Homogeneous Solution
3.5. The Construction of Solving Equations
3.6. Numerical Assessment
4. Transient Heat Conduction in Functionally Graded Materials
4.1. Basic Formulas of Transient Heat Conduction
4.2. Meshless Formulation
4.3. The Backward Time Stepping Scheme
4.4. Numerical Assessment
5. Thermo-Mechanical Analysis of FGMs
5.1. Governing Equations for FGMs
5.4. Method of Fundamental Solutions
3.4. Final Complete Solutions
6.1.Basic Equations of Thin Plate Bending
6.2. Fundamental Solution And Determination of Source Points
6.3. Radial Basis Function (RBF)
Appendix. First and Second Order Differentials of Fundamental Solutions and Approximated Particular Solutions
A1. Fundamental Solutions and Their Derivatives
A2. Approximated Particular Solutions and Their Derivatives
A2.1. Power Spline (PS) Function
A2.2. Thin Plate Spline (TPS) Function
Chapter 7 EXPLICIT DYNAMIC FINITE ELEMENT METHOD FOR FRACTURE OF SHELLS
2. Representation of Fractured Shell Element
2.1. Shell Formulation with Fracture
2.2. Representation of Fractured Shell Elements
2.3. Computation of Element Kinematics
2.3.1. Belytschko Lin Tsay 4 Nodes Element
2.3.2. Discrete Kirchhoff Triangular Shell Element
3. Computation Procedures
3.2. Computation of Lumped Mass Matrix for Cracked Elements
3.3. Computation of Element Internal Forces
4. Material Model and Modeling of Fracture
4.1. Hardening Plasticity for Quasi-Brittle Material
4.3. Cohesive Crack Model
5.1. The Simulations of a Thin Shell Cylinder under Hydrostatic and Impulsive External Pressure
5.2. Tearing of a Plate by Out-of-Plane Loading
Chapter 8 PROBABILISTIC INTERPRETATIONS OF THE TLM NUMERICAL METHOD
Lossless TLM Formulations in Two and Three Dimensions
Lossy TLM Formulations in One Dimension
Lossy TLM Formulations in Two and Three Dimensions
Probabilistic Interpretations of TLM (The One-Dimensional Case)
Probabilistic Interpretations in Two and Three Dimensions
Problem with Existing Theory
An Apparent Paradox in the TLM/Random Walk Equivalence
A Resolution to the Paradox of a Discrete Random Walker With Negative Probability
A General Transition Probability for Walker Pairs
Discrete Random Walks and Diffraction
Application of Extended Theory
A Particle Approach to Wave Diffraction Phenomena
Generating Function Derivation of Eqn (1) in Main Text
Two-Dimensional Expressions: Eqns (11), (12)
Three-Dimensional Expressions: Eqns (13), (14)
Chapter 9 SOME OBSERVATIONS ON ACCELERATED NUMERICAL SCHEMES FOR THE LAPLACE EQUATION
The Reverse Engineering of Numerical Schemes for the Laplace Equation
III. Successive Over-Relaxation
IV. A Fraction of Error at (X) Over Two Previous Time-Steps Added to Gauss-Seidel Scheme
V. A Fraction of the Error at (X) between N-th and (N+1)th Steps Added to Gauss-Seidel Scheme
VI. A Fraction of the Error at (X) iver the Two Previous Steps Is Added to a Jacobi Scheme
VII. A Fraction of the Error at (X) Observed between N-th and (N+1)th Steps Added to a Jacobi Scheme
VIII. A Fraction of the Error Difference over Two Time-Steps Added to a Gauss-Seidel Scheme
IX. A Fraction of the Error Difference over Two Time-Steps Added to a Jacobi Scheme
X. A Fraction of the Mean Error over Two Time-Steps Added to a Gauss-Seidel Scheme
XI. A Fraction of the Mean Error over Two Time-Steps Added to a Jacobi Scheme
XII. Du Fort- Frankel Scheme
Matrix Stability Analysis and Optimum Convergence Conditions
TLM Schemes for The Solution of the Laplace Equation
Chapter10INSEARCHOFIMPROVEMENTSFORTHECOMPUTATIONALSIMULATIONOFINTERNALCOMBUSTIONENGINES
2.GoverningEquationsandNumericalApproximation
2.1.3.ArbitraryLagrangianEulerianDescriptionofGoverningEquations
2.2.NumericalImplementation
2.2.1.FiniteElementFormulation
2.2.3.DynamicBoundaryConditionsUsingLagrangeMultipliers
3.2.TheMeshDynamicsStrategy
3.2.2.DifferentialPredictor
3.2.3.AvoidingtheRelaxationoftheInitialMesh
3.3.SimultaneousMeshUntanglingandSmoothing
3.3.1.FunctionalRegularization
4.ResolutionofCompressibleFlowsintheLowMachNumberLimit
4.1.ProblemDefinitionandEigenvaluesAnalysis
4.1.1.PreconditioningStrategies
4.2.NumericalImplementation
4.2.1.VariationalFormulation
4.2.2.DynamicBoundaryConditions
4.3.1.FlowinaLidDrivenCavity
4.3.2.FlowinaChannelwithaMovingIndentation
4.3.3.Opposed-PistonEngine
5.Couplingof1D/multi-DDomainsforCompressibleFlows
5.1.CouplingforImplicitSchemes‘Monolithically’Solved
5.1.1.Couplingof1D/multi-DDomains
6.NumericalSimulationoftheMRCVCEngine
6.1.OperationandGeometryofMRCVC
6.2.NumericalSimulationofFluidFlowintheMRCVCEngine
6.2.1.ComputationalMeshDynamicProblem
6.2.2.ComputationalFluidDynamicProblem
Appendix:PipeJunction0DModel
Chapter11MPIANDPETSCFORPYTHON
1.1.ThePythonProgrammingLanguage
1.2.ToolsforScientificComputing
1.2.2.ScientificToolsforPython
1.2.3.FortrantoPythonInterfaceGenerator
2.1.1.CommunicationDomainsandProcessGroups
2.1.2.Point-to-PointCommunication
2.1.3.CollectiveCommunication
2.1.4.DynamicProcessManagement
2.1.5.One-SidedOperations
2.1.6.ParallelInput/Output
2.2.RelatedWorkonMPIandPython
2.3.DesignandImplementation
2.3.1.CommunicatingGeneralPythonObjectsandArrayData
2.4.2.BlockingPoint-to-PointCommunications
2.4.3.NonblockingPoint-to-PointCommunications
2.4.4.CollectiveCommunications
2.4.5.DynamicProcessManagement
2.4.6.One-sidedOperations
2.4.7.ParallelInput/OutputOperations
3.2.2.WorkingwithMatrices
3.2.4.UsingNonlinearSolvers
3.3.2.AMatrix-FreeApproachfortheLinearProblem
Chapter12DOMAINDECOMPOSITIONMETHODSINCOMPUTATIONALFLUIDDYNAMICS
2.SchurComplementDomainDecompositionMethod
2.2.EigenvaluesofSteklovOperator
3.PreconditionersfortheSchurComplementMatrix
3.1.TheNeumann-NeumannPreconditioner
3.2.TheInterfaceStripPreconditioner(ISP)
4.TheAdvective-DiffusiveCase
5.ImplementationoftheNeumann-NeumannPreconditioner
6.TheInterfaceStripPreconditioner:SolutionoftheStripProblem
6.1.ImplementationDetailsoftheIISDSolver
7.ClassicalOverlappingDomainDecompositionMethod:AlternatingSchwarzMethods
8.NumericalExamplesinSequentialEnvironments
8.2.TheScalarAdvective-DiffusiveProblem
8.2.1.SUPGVariationalFormulation
8.3.TheHypersonicFlowOveraFlatPlateTest
8.3.2.InviscidApproximation
8.3.3.VariationalFormulation
9.NumericalExamplesinParallelEnvironment
9.2.TheScalarAdvective-DiffusiveProblem
9.3.TheCoupledHydrologicalFlowModel
9.3.4.Saint-VenantNumericalExample
9.3.5.CoupledSurface-SubsurfaceFlowNumericalTest
9.4.TheStokesFlowinaLongHorizontalChannel
9.4.1.IncompressibleNavier-StokesEquations
9.5.TheViscousIncompressibleNavier-StokesFlowAroundanInfiniteCylinder
9.6.TheFractionalStepScheme.TheLidDrivenCavity
9.6.1.DisaggregatedScheme
9.6.3.SomeCommentsontheScalabilityoftheIISD+ISPPreconditioner
9.7.TheWindFlowArounda3DImmersedBody.TheAHMEDModel
9.7.1.AhmedBody:NumericalResultsforVeryLowReynoldsNumber
9.7.2.AhmedBody:NumericalResultsforHighReynoldsNumber
Chapter13MESHADAPTATIONALGORITHMBASEDONGRADIENTOFSTRAINENERGYDENSITY
2.Nearest-NodesFiniteElementMethodwithInter-dependentShapeFunctions
3.GradientofStrainEnergyDensityasaGuideforMeshMod-ification
4.MeshModificationOperators