Membrane Reactor Engineering :Applications for a Greener Process Industry

Publication subTitle :Applications for a Greener Process Industry

Author: Angelo Basile  

Publisher: John Wiley & Sons Inc‎

Publication year: 2016

E-ISBN: 9781118906828

P-ISBN(Paperback): 9781118906804

P-ISBN(Hardback):  9781118906804

Subject: TQ052 chemical reaction process and mechanical equipment

Keyword: Inorganic membranes
Polymeric membranes
Membrane gas separation
Membrane reactor
Reactor design
Process modelling and optimization
Membrane contactors
Pervaporation
Fuel cells
Membrane technology                                 

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Uniquely focussed on the engineering aspects of membrane reactors

  • Provides tools for analysis with specific regard to sustainability
  • Applications include water treatment, wastewater recycling, desalination, biorefineries, agro-food production
  • Membrane reactors can bring energy saving, reduced environmental impact and lower operating costs

Chapter

Nomenclature

List of acronyms

Acknowledgments

References

Chapter 2 Criteria for a Palladium Membrane Reactor or Separator Design II: Concentration Polarization Effects

2.1 Introduction

2.2 Concentration Polarization

2.3 Mass Transfer Effects

2.4 Separator

2.5 Reactor: Methane Steam Reforming (MSR)

2.6 Concluding Remarks

Acknowledgment

References

Chapter 3 Structured Catalysts and Support for Membrane Reactors

3.1 Introduction

3.2 Structured Catalysts

3.3 Membranes

3.4 Applications

3.5 Conclusions

Nomenclature

References

Chapter 4 Elements of Reactor Design and Development of Process Schemes for Membrane Reactors

4.1 Introduction

4.2 Membrane Reactor Concept and Configurations

4.3 Membrane Reactor Design Criteria

4.4 Discussion

4.5 Conclusions

Nomenclature

Greek Symbols

References

Chapter 5 Ceramic Membranes with Mixed Ionic and Electronic Conductivity: Oxygen and Hydrogen Transporting Membranes – Synthesis, Characterization, Applications

5.1 Introduction

5.2 Oxygen Ions-Electrons Mixed Conducting Membranes, Latest Material Developments

5.3 Proton-Electron Mixed Conducting Materials, Latest Material Developments

5.4 Applications – Laboratory Scale

5.5 Applications – Pilot Scale

5.6 Conclusions

Acknowledgement

References

Chapter 6 Polymeric Membrane Reactors

6.1 Introduction

6.2 General Considerations on Polymeric Membrane Selection for Membrane Reactors

6.3 Principles of Polymeric Membrane Preparation

6.4 Polymeric Membrane Modification

6.5 Application of Polymeric MRs

6.6 Conclusion and Future Trends

Acronyms

References

Chapter 7 Ceramic Membrane Reactors: Theory and Applications

7.1 Introduction

7.2 Principles of Ceramic MRs

7.3 Conclusion and Future Trends

Acronyms

References

Part 2 Applications

Chapter 8 Membrane Reactors for Hydrocarbon Dehydrogenation

8.1 Introduction

8.2 Propylene Market and Production Maximization

8.3 Propane Dehydrogenation

8.4 Membrane-Based PDH

8.5 Conclusions

List of Acronyms

Acknowledgment

References

Chapter 9 Pd-Based Membrane Reactors for Syngas Preparation and WGS

9.1 Introduction to Steam Reforming Technology

9.2 Reformer and Membrane Module (RMM) Architecture for Syngas Production

9.3 Reaction and Membrane Module (RMM) Architecture for Water Gas Shift Application (WGSR)

9.4 Conclusions

Nomenclature

References

Chapter 10 Membrane Reactors Powered by Solar Energy

10.1 Introduction

10.2 Process Description

10.3 Process Analysis

10.4 Conclusions

Acknowledgments

Acronyms

Symbols

References

Chapter 11 Molten Salt Solar Steam Reforming: Process Schemes Analysis

11.1 Introduction

11.2 Pilot Plant and Reactor Arrangement

11.3 Option A1 – SR Reaction Duty Supplied by Molten Salts with Export Power Production

11.4 Option A2 – SR Reaction Duty Supplied by Molten Salts and No Export Power Production

11.5 Option B1 – Hybrid Scheme with Oxy‐Firing of Retentate

11.6 Option B2 – Hybrid Scheme with Air‐Firing of Retentate

11.7 Economic Assessment

11.8 Conclusions

Acknowledgment

Nomenclature

References

Chapter 12 Membrane Reforming Pilot Testing: KT Experiences

12.1 Introduction

12.2 KT RMM Pilot Plant Facility

12.3 Long-Term Test on Membrane Modules

12.4 Experimental Results from the RMM Configuration

12.5 Membrane Separation in a Novel Scheme Based on CPO Technology

12.6 Conclusions

Nomenclature

References

Chapter 13 Gas Separation by Polymer Membranes: Research Activity and Industrial Applications

13.1 Introduction

13.2 Membranes for Gas Separation Applications

13.3 Materials Research for Membrane Separation Technology

13.4 Membrane Modules and Membrane Systems

13.5 Gas Separation by Membrane Applications

13.6 Concluding Remarks

List of Symbols and Acronyms

References

Chapter 14 Pervaporation and Membrane Contactors

14.1 Introduction

14.2 Pervaporation

14.3 Fundamentals of PV

14.4 Applications and PV Membranes

14.5 Membrane Contactors

14.6 Membrane Distillation

14.7 Conclusions

List of Symbols

Acronyms

References

Chapter 15 Fuel Cells: A General Overview, Applications and Future Trends

15.1 Overview on Fuel Cells and their Horizon

15.2 What is a Fuel Cell?

15.3 Variety of Systems and Applications

15.4 Low-Temperature Fuel Cells

15.5 High-Temperature Fuel Cells

15.6 Conclusion and Future Trends

List of Acronyms

References

Index

Supplemental Images

EULA

The users who browse this book also browse


No browse record.