Bioprocessing for Cell-Based Therapies

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

With contributions from leading, international academics and industrial practitioners, Bioprocessing for Cell-Based Therapies explores the very latest techniques and guidelines in bioprocess production to meet safety, regulatory and ethical requirements, for the production of therapeutic cells, including stem cells.

  • An authoritative, cutting-edge handbook on bioprocessing for the production of therapeutic cells with extensive illustrations in full colour throughout
  • An authoritative, cutting-edge handbook on bioprocessing for the production of therapeutic cells with extensive illustrations in full colour throughout
  • In depth discussion of the application of cell therapy including methods used in the delivery of cells to the patient
  • Includes contributions from experts in both academia and industry, combining a practical approach with cutting edge research
  • The only handbook currently available to provide a state of the art guide to Bioprocessing covering the complete range of cell-based therapies, from experts in academia and industry

Chapter

1.3 Operations in Cell Therapy Manufacture

1.3.1 Cells for Cell Therapy Production

1.4 Upstream Processing of Cellular Therapies

1.4.1 Cell Separation

1.4.2 Cell Expansion

1.4.3 Tissue Expansion

1.4.4 Adherent Cell Expansion

1.4.5 Suspension Cell Expansion

1.4.6 Differentiation

1.5 Downstream Processing of Cellular Therapies

1.5.1 Harvest, Washing and Concentration

1.5.2 Separation and Purification

1.6 Formulation, Fill and Finish of Cellular Therapies

1.6.1 Formulation

1.6.2 Fill and Finish

1.6.3 Preservation and Shipment

1.7 Administration of the Cell Therapy to a Patient

1.8 Cell Therapy Manufacturing Facilities of the Future

1.8.1 Factory of the Future Requirements

1.9 Conclusion

References

Chapter 2 Structured Methodology for Process Development in Scalable Stirred Tank Bioreactors Platforms

2.1 Introduction

2.2 Understanding the Engineering of the Stirred Tank Bioreactors

2.2.1 Mixing Phenomena in Stirred Tank Bioreactors

2.2.2 Understanding Oxygen Transfer Rate (kLa) with Different Sparging Methodologies

2.2.3 Heat Transfer in STB (Minimum Volume, Sensor/Sensing Control)

2.2.4 How to Choose a Microcarrier for Adherent Cells (hMSCs)

2.3 Understanding the Biology of the Cells in Stirred Tank Bioreactors (STB)

2.3.1 Cell Types (Adherent and Suspension Cells)

2.3.2 Assays for Comparability, Nutrients, Senescence and Doubling Dime

2.4 Process Development of Adherent Cells in STB Platforms

2.4.1 Standard Comparison to Cell Factory

2.4.2 Methodology for Screening of Microcarriers

2.4.3 Process Development in Small‐scale Bioreactors (3L)

2.4.4 Process Development in Medium‐scale Bioreactors (50L)

2.4.5 Case Study for Expansion of Bone Marrow Derived MSCs in Stirred Tank Bioreactors

2.5 Future Directions

References

Chapter 3 The Effect of Scale-up on Cell Phenotype: Comparability Testing to Optimize Bioreactor Usage and Manufacturing Strategies

3.1 Introduction

3.1.1 Cell Characterization in the Development Path

3.1.2 The MultiStem® Allogeneic Cell Therapy Product: Mechanisms of Benefit and Target Cells Numbers

3.2 Challenges in Cell Product Development

3.2.1 Effect of Large-scale Expansion on Stem Cell Properties

3.2.2 Serum-free and Xeno-free Media Development

3.3 Stem Cell Characterization

3.3.1 ISCT Requirements

3.3.2 Potency Assays

3.3.3 Omics Screens for Therapeutic Stem Cell Characterization

3.4 Next-generation Stem Cell Development

References

Chapter 4 The Scale-up of Human Mesenchymal Stem Cell Expansion and Recovery

4.1 Introduction

4.2 Scale-up or Scale-out

4.3 Understanding the Small Scale

4.4 Microcarrier Screening

4.5 Spinner Flask Culture

4.6 Large-scale Expansion in Conventional Stirred Tank Bioreactors

4.7 Cell Recovery from Microcarriers

4.8 Conclusions

References

Chapter 5 Challenges of Scale-up of Cell Separation and Purification Techniques

5.1 Introduction

5.1.1 Cell Separation for Cell-based Therapeutics

5.1.2 Separation Methodology Design

5.1.3 Objective of this Chapter

5.2 Scalable Cell Separation for Cell Therapy

5.2.1 Label Requiring versus Label-free Separation

5.2.2 Active versus Passive Method

5.2.3 Isolated Purification (Including Off-the-Shelf) versus Embedded Integrated Process

5.2.4 Low versus High Resolution

5.2.5 Open versus Closed Systems

5.2.6 Batch versus Continuous Separation

5.3 Currently Developed Cell Separation Techniques

5.3.1 Acoustophoresis

5.3.2 Aqueous Two-Phase System (ATPS)

5.3.3 Centrifugal Techniques

5.3.4 Dielectrophoresis (DEP)

5.3.5 Deterministic Lateral Displacement (DLD)

5.3.6 Genetic Engineering

5.3.7 Hydrodynamic Filtration (HDF)

5.3.8 Immunoadsorption

5.3.9 Immunomagnetic Cell Sorting

5.3.10 Inertial Migration

5.3.11 Magnetic Cell Sorting – Label-free

5.3.12 Microscale Vortices

5.3.13 Normal Flow Filter (NFF)

5.3.14 Optical – Label-free

5.3.15 Tangential Flow Filters (TFF)

5.3.16 Weir and Pillar

5.4 Conclusion

Acknowledgements

References

Chapter 6 Fundamental Points to Consider in the Cryopreservation and Shipment of Cells for Human Application

6.1 Introduction

6.2 The Role of Cryoprotective Agents (CPA)

6.3 Vitrification versus Cryopreservation

6.4 Points to Consider in the Development of Cryopreservation Protocols

6.4.1 General Considerations

6.4.2 Cellular Characteristics and Selection of Appropriate CPAs and Cooling Protocols

6.4.3 Key Events in Cryopreservation

6.5 Large-volume Freezing

6.6 Cryopreservation as Part of Manufacturing Processes

6.6.1 Containers for Cryopreserved Cells

6.6.2 Controlled Rate Freezers and Storage Systems

6.6.3 The Cold-chain: Challenges and Solutions

6.6.4 Biobanking and Regulatory Requirements

6.7 Conclusions

Acknowledgements

References

Chapter 7 Short-term Storage of Cells for Application in Cell-based Therapies

7.1 Introduction

7.1.1 Advances in Cell-based Therapies

7.1.2 The Logistical Landscape for CTPs and the Requirement for Short-term Storage of Cells

7.2 Hypothermia and Mammalian Cell Storage

7.2.1 Hypothermic Storage of Mesenchymal Stem Cells (MSCs)

7.2.2 Optimal Temperature for Cell Storage

7.3 The Application of Hypothermic Storage in Cell-based Therapies

7.4 Concluding Remarks

References

Chapter 8 Cell Therapy in Practice

8.1 Introduction

8.2 The Classification of ATMPs

8.3 European Regulations

8.3.1 Hospital Exemption (HE) and “Specials” Manufacturing

8.3.2 Orphan Medicinal Product Designation

8.3.3 Committee for Advanced Therapies

8.3.4 Good Manufacturing Practice (GMP)

8.3.5 European Union Tissue and Cells Directives (EUTCD)

8.4 ATMP Case Study: Autologous Limbal Stem Cell Therapy: the Newcastle Experience

8.5 Conclusion

References

Index

EULA

The users who browse this book also browse


No browse record.