Oilseed Crops :Yield and Adaptations under Environmental Stress

Publication subTitle :Yield and Adaptations under Environmental Stress

Author: Parvaiz Ahmad  

Publisher: John Wiley & Sons Inc‎

Publication year: 2017

E-ISBN: 9781119048794

P-ISBN(Paperback): 9781119048770

P-ISBN(Hardback):  9781119048770

Subject: S565 oil crop

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Oil Seed Crops: Yield and Adaptations under Environmental Stress is a state-of-the-art reference that investigates the effect of environmental stress on oil seed crops and outlines effective ways to reduce stress and improve crop yield.

With attention to physiological, biochemical, molecular, and transgenic approaches, the chapters discuss a variety of oil seed crops and also cover a broad range of environmental stressors including microbes, salt, heavy metals, and climate change.

Featuring up-to-date research from a global group of experts, this reference provides innovative recommendations for mitigating environmental stress and promoting the healthy growth, development, and adaptation of crops.

Chapter

Chapter 2 Castor bean (Ricinus communis L.): Diversity, seed oil and uses

2.1 Introduction

2.2 Botanical description

2.3 Genetic resources

2.4 Seed diversity of R. communis

2.5 Drought and salinity tolerance

2.6 Seed yield of R. communis

2.7 Seed toxicity

2.8 Physicochemical characters of RCO (Ricinus communis oil)

2.9 Oil fatty acids

2.10 Uses of oil of R. communis

2.10.1 Medicinal interest

2.10.2 R. communis as a biofuel

2.10.3 Other uses of RCO

2.11 Conclusion and future prospects

References

Chapter 3 Seed composition in oil crops: Its impact on seed germination performance

3.1 Introduction

3.2 Sources of variation in seed lipid quantity and quality

3.2.1 Variation in seed lipid concentration

3.2.2 Variation in oil fatty acid composition

3.3 How quantity and composition of oil reserves may affect germination

3.3.1 Models describing seed germination performance

3.3.2 Does the concentration and composition of oil reserves affect seed germination?

3.4 Conclusion and future prospects

References

Chapter 4 Oilseed crops and biodiesel production: Present and future prospects

4.1 Introduction

4.2 Biodiesel definition

4.3 Biodiesel background and sources

4.4 Biodiesel fuel: Present prospects and production

4.5 Biodiesel plant capacity

4.6 Biodiesel processing techniques and methods

4.6.1 The transesterification reaction

4.6.2 Homogeneous catalysis

4.6.3 Acid-base catalyzed process

4.6.4 Heterogeneous catalyzed transesterification

4.6.5 Enzymatic catalysis

4.6.6 Supercritical alcohol transesterification

4.6.7 Transesterification using ultrasonic irradiation

4.6.8 Transesterification using microwave irradiation

4.6.9 In-situ transesterification

4.7 Biodiesel characterization and standards

4.7.1 Fatty acid composition of biodiesel

4.8 Biodiesel from conventional oils

4.9 Biodiesel from unconventional oils

4.9.1 Biodiesel from jatropha (Jatropha curcas L.)

4.9.2 Biodiesel from Moringa peregrina

4.9.3 Biodiesel from insect oils

4.9.4 Biodiesel from Sclerocarya birrea (Marula) oil

4.10 Conclusion and future prospects

References

Chapter 5 Vegetable oil yield and composition influenced by environmental stress factors

5.1 Introduction

5.2 Abiotic and biotic stress factors

5.3 Oil crops’ yield and the content of lipids

5.3.1 Soy

5.3.2 Rapeseed

5.3.3 Sunflower

5.3.4 Palm

5.3.5 Olive

5.4 Free fatty acids

5.5 Fatty acids composition

5.5.1 Fatty acids’ composition under temperature stress

5.5.2 Mechanisms behind the changes in the fatty acid composition

5.5.3 Fatty acid composition under water stress

5.6 Antioxidants

5.6.1 Phenolic compounds under environmental stress

5.6.2 Tocopherols under environmental stress

5.7 Conclusion and future prospects

References

Chapter 6 Soybean: Growth, development and yield under salt stress

6.1 Introduction

6.2 Chemical composition of soybean

6.2.1 Soybean proteins

6.2.2 Soybean oils

6.2.3 Bioactive soybean components

6.2.4 Carbohydrates in soybean

6.2.5 Minerals and vitamins in soybean

6.3 Salinity and salt stress

6.4 Plant response to salt stress

6.5 Soybean under salt stress

6.5.1 Micronutrients and bioactive compounds under salt stress

6.5.2 Adaptation of roots and leaves

6.5.3 Wild and cultivated soybean under salt stress

6.5.4 Pulsed magnetic field

6.5.5 Endophytic fungi

6.5.6 Plant growth-promoting bacteria (PGPB)

6.5.7 Symbiotic nitrogen-fixing bacteria

6.5.8 Exogenous substances

6.6 Role of transgenic soybean in agriculture

6.7 Conclusion and future prospects

References

Chapter 7 Sunflower resistance to the vampire weed broomrape: A Van Helsing quest story

7.1 Introduction

7.2 Vampires among the vegetables

7.3 The vampirism lifestyles

7.4 The broomrape family: Vampire invaders

7.5 Broomrape biology

7.5.1 A so cute vampire

7.5.2 The vampire’s bite

7.5.3 Vampirism effect

7.6 The sunflower vampire Orobanche cumana (Wallr)

7.6.1 Vampire identification

7.6.2 A widespread vampire

7.7 Fighting against vampire weeds

7.7.1 Cultural practices

7.7.2 Physical methods

7.7.3 Chemical control methods

7.7.4 Biological control methods

7.7.5 Integrated management

7.8 Sunflower

7.8.1 Helianthus genus

7.8.2 A brief history of cultivated sunflower

7.8.3 Sunflower production and use

7.9 Resistance

7.9.1 Vampire resistance in crops (sunflower excluded)

7.9.2 Sunflower resistance

7.10 Conclusion and future prospects

References

Chapter 8 Biochemical and molecular studies on the commercial oil-yielding desert shrub Simmondsia chinensis (jojoba, a desert gold)

8.1 Introduction

8.1.1 Origin and distribution

8.1.2 Botanical description

8.1.3 Reproduction

8.1.4 Cultivation and harvesting

8.1.5 Physico-chemical properties of jojoba oil

8.1.6 Economic uses

8.2 Advances in jojoba oil research

8.3 Genetic improvement

8.4 Market

8.4.1 International status

8.4.2 National status

8.5 Barriers to progress

8.6 Conclusion and future prospects

Acknowledgements

References

Chapter 9 Role of phytohormones in improving the yield of oilseed crops

9.1 Introduction

9.2 Phytohormones

9.3 Characteristics of phytohormones

9.4 Biosynthesis of phytohormones

9.4.1 Biosynthesis of auxin

9.4.2 Biosynthesis of cytokinin

9.4.3 Biosynthesis of ethylene

9.4.4 Biosynthesis of gibberellin

9.4.5 Biosynthesis of salicylic acid

9.4.6 Biosynthesis of ABA

9.5 Signaling of phytohormones

9.5.1 Auxin signaling

9.5.2 Cytokinin signaling

9.5.3 GA signaling

9.5.4 Ethylene signaling

9.5.5 ABA signaling

9.5.6 Salicylic acid signaling

9.6 Role of phytohormones

9.6.1 Auxin

9.6.2 Salicyclic acid (SA)

9.6.3 Ethylene

9.6.4 Abscisic acid (ABA)

9.6.5 Gibberellin

9.6.6 Cytokinins

9.7 Mode of action of phytohormones

9.8 Phytohormones in the development of silique (pods)

9.9 Role of phytohormones in plant protection

9.10 Phytohormones interact with other hormones

9.11 Conclusion and future prospects

References

Chapter 10 Plant–microbe interaction in oilseed crops

10.1 Introduction

10.2 Ecology and diversity of microbes associated with plant roots

10.3 Role of microbial diversity for soil, plant health and plant nutrition

10.4 Plant and microbe communication in diverse rhizospheric environments

10.5 Mechanisms employed by microbes to mitigate stress-induced adverse effects on oilseed crops

10.6 Effects of beneficial microorganisms on oilseed crops’ cultivation and productivity

10.6.1 Groundnut/peanut

10.6.2 Sunflower

10.6.3 Soybean

10.6.4 Rapeseed

10.6.5 Olive plant

10.6.6 Maize

10.7 Conclusion and future prospects

Acknowledgments

References

Chapter 11 Brassicaceae plants: Metal accumulation and their role in phytoremediation

11.1 Brassicaceae: introduction to family

11.2 Phylogenetic status

11.3 Heavy metal pollution in the environment

11.4 Hyperaccumulation potential and phytoremediation of contaminated soils

11.5 Natural phytoremediation vs. chemically enhanced phytoremediation

11.6 Role of genetic manipulation in increasing hyperaccumulation potential

11.7 Physiological and biochemical responses

11.8 Food safety and health concerns

11.9 Safe disposal practices for hyperaccumulator Brassicas

11.10 Conclusion and future prospects

References

Chapter 12 Role of organic and inorganic amendments in alleviating heavy metal stress in oilseed crops

12.1 Introduction

12.2 Sources of heavy metal contamination of agricultural soils

12.3 Heavy metals toxicity in oilseed crops

12.4 Soil amendments for the remediation of metal toxicity in oilseed crops

12.4.1 Inorganic amendments

12.4.2 Organic amendments

12.5 Conclusion and future prospects

References

Chapter 13 Biochemical and molecular responses of oilseed crops to heavy metal stress

13.1 Introduction

13.2 Biochemical responses

13.2.1 Proline

13.2.2 Ascorbic acid

13.2.3 Chlorophyll

13.2.4 Carotenoids

13.2.5 Phenolic compounds

13.2.6 Total soluble protein content

13.3 Production of reactive oxygen species (ROS) and antioxidant defense agents

13.3.1 SOD activity

13.3.2 GPX activity

13.3.3 CAT activity

13.3.4 Oxylipin

13.4 Molecular response

13.5 Significance of oilseed crops

13.6 What are essential and non‐essential elements?

13.7 Relationship between oilseed crops and heavy metals stress

13.8 Different heavy metals stress on biochemical and molecular responses of oilseed crops

13.9 Conclusion and future prospects

References

Chapter 14 The role of oilseed crops in human diet and industrial use

14.1 Introduction

14.2 Classifications of oilseed crops

14.2.1 Soyabean

14.2.2 Groundnut

14.2.3 Rapeseed

14.2.4 Sunflower

14.2.5 Cotton seed

14.2.6 Mustard

14.2.7 Sesame seed

14.2.8 Linseed

14.2.9 Olive seed

14.2.10 Castor oilseed

14.2.11 Safflower seed

14.2.12 Oil palm

14.2.13 Coconut

14.3 Production of oilseed meal and oil

14.4 Processing of oilseed crops

14.5 Major nutrients in oilseed and their roles in human nutrition

14.5.1 Protein

14.5.2 Bioactives in oilseed crops

14.5.3 Fatty acids

14.6 Industrial utilization of oilseeds

14.6.1 Source of energy

14.6.2 Fertilizer

14.6.3 Food industries

14.6.4 Animal feeds

14.6.5 Cosmetics

14.6.6 Medicine

14.6.7 Other products

14.7 Conclusion and future prospects

References

Chapter 15 Appraisal of biophysical parameters in Indian mustard (Brassica juncea) using thermal indices

15.1 Introduction

15.2 Thermal indices and biophysical parameters

15.3 Thermal energy use efficiency and biophysical parameters

15.4 Radiation dynamics and biophysical parameters

15.5 Soil temperature and biophysical parameters

15.6 Conclusion and future prospects

References

Index

EULA

The users who browse this book also browse


No browse record.